Short-term wind speed prediction model based on GA-ANN improved by VMD

2020 ◽  
Vol 156 ◽  
pp. 1373-1388 ◽  
Author(s):  
Yagang Zhang ◽  
Guifang Pan ◽  
Bing Chen ◽  
Jingyi Han ◽  
Yuan Zhao ◽  
...  
2019 ◽  
Vol 44 (3) ◽  
pp. 266-281 ◽  
Author(s):  
Zhongda Tian ◽  
Yi Ren ◽  
Gang Wang

Wind speed prediction is an important technology in the wind power field; however, because of their chaotic nature, predicting wind speed accurately is difficult. Aims at this challenge, a backtracking search optimization–based least squares support vector machine model is proposed for short-term wind speed prediction. In this article, the least squares support vector machine is chosen as the short-term wind speed prediction model and backtracking search optimization algorithm is used to optimize the important parameters which influence the least squares support vector machine regression model. Furthermore, the optimal parameters of the model are obtained, and the short-term wind speed prediction model of least squares support vector machine is established through parameter optimization. For time-varying systems similar to short-term wind speed time series, a model updating method based on prediction error accuracy combined with sliding window strategy is proposed. When the prediction model does not match the actual short-term wind model, least squares support vector machine trains and re-establishes. This model updating method avoids the mismatch problem between prediction model and actual wind speed data. The actual collected short-term wind speed time series is used as the research object. Multi-step prediction simulation of short-term wind speed is carried out. The simulation results show that backtracking search optimization algorithm–based least squares support vector machine model has higher prediction accuracy and reliability for the short-term wind speed. At the same time, the prediction performance indicators are also improved. The prediction result is that root mean square error is 0.1248, mean absolute error is 0.1374, mean absolute percentile error is 0.1589% and R2 is 0.9648. When the short-term wind speed varies from 0 to 4 m/s, the average value of absolute prediction error is 0.1113 m/s, and average value of absolute relative prediction error is 8.7111%. The proposed prediction model in this article has high engineering application value.


Energies ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1744 ◽  
Author(s):  
Athraa Ali Kadhem ◽  
Noor Wahab ◽  
Ishak Aris ◽  
Jasronita Jasni ◽  
Ahmed Abdalla

2014 ◽  
Vol 599-601 ◽  
pp. 1972-1975
Author(s):  
Zheng Zhao ◽  
Long Xin Zhang ◽  
Hai Tao Liu ◽  
Zi Rui Liu

Accurate wind speed prediction is of significance to improve the ability to coordinate operation of a wind farm with a power system and ensure the safety of power grid operation. According to the randomness and volatility of wind speed, it is put forward that a WD_GA_LS_SVM short-term wind speed combination prediction model on basis of Wavelet decomposition (WD), Genetic alogorithms (GA) optimization and Least squares support vector machine (LS_SVM). Short-term wind speed prediction is carried out and compared with the neural network prediction model with use of the measured data of a wind farm. The results of error analysis indicate the combination prediction model selected is of higher prediction accuracy.


2020 ◽  
pp. 002029402098140
Author(s):  
Jiale Ding ◽  
Guochu Chen ◽  
Yongmin Huang ◽  
Zhiquan Zhu ◽  
Kuo Yuan ◽  
...  

In this paper, a short-term wind speed prediction model, called CEEMDAN-SE-Improved PIO-GRNN, is proposed to optimize the accuracy of the short-term wind speed forecast. This model is established on account of the optimized General Regression Neural Network (GRNN) method optimized by three algorithms, which are Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Sample Entropy (SE), and Pigeon Inspired Optimization (PIO), separately. Firstly, decomposing the original wind speed sequences into several subsequences with different complexity by CEEMDAN. Then, the complexity of each subsequence is judged by SE and the similar subsequences are combined into a new sequence to reduce the scale of calculation. Afterwards, the GRNN model optimized by improved PIO is used to predict each new sequence. Finally, the predicted results are superposed as the eventual predicted value. Implementing the prediction for the wind speed data of a wind field in north China within 30 days by applying the different prediction models, namely, GRNN, CEEMDAN-GRNN, Improved PIO-GRNN, and CEEMDAN-SE-Improved PIO-GRNN which are proposed in this paper. Comparing the prediction curves of different models with the fitting curve of the actual wind speed shows that the optimal fitting effect and minimum error value are included in CEEMDAN-SE-Improved PIO-GRNN model. Specifically, the values of mean squared error (MSE), mean absolute error (MAE) and weighted mean absolute percentage error (WMAPE) separately decrease by 0.6222, 0.3334, and 8.5766%, which compare with the single prediction model GRNN. Meanwhile, diebold-mariano (DM) test shows that the prediction ability of the two models is significantly different. The above statements indicate the proposed model does great advance in the precision of short-term wind speed prediction.


Sign in / Sign up

Export Citation Format

Share Document