Numerical characterization of seiche waves energy potential in river bank lateral embayments

Author(s):  
Carmelo Juez ◽  
Adrián Navas-Montilla
Author(s):  
Ming Fan ◽  
Yanhui Han ◽  
Xinyu Tan ◽  
Liang Fan ◽  
Ellen S. Gilliland ◽  
...  

2017 ◽  
Vol 103 ◽  
pp. 50-63 ◽  
Author(s):  
Marco Sasso ◽  
Michele Gabrio Antonelli ◽  
Edoardo Mancini ◽  
Mario Radoni ◽  
Dario Amodio

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1252
Author(s):  
Hadar Elyashiv ◽  
Revital Bookman ◽  
Lennart Siemann ◽  
Uri ten Brink ◽  
Katrin Huhn

The Discrete Element Method has been widely used to simulate geo-materials due to time and scale limitations met in the field and laboratories. While cohesionless geo-materials were the focus of many previous studies, the deformation of cohesive geo-materials in 3D remained poorly characterized. Here, we aimed to generate a range of numerical ‘sediments’, assess their mechanical response to stress and compare their response with laboratory tests, focusing on differences between the micro- and macro-material properties. We simulated two endmembers—clay (cohesive) and sand (cohesionless). The materials were tested in a 3D triaxial numerical setup, under different simulated burial stresses and consolidation states. Variations in particle contact or individual bond strengths generate first order influence on the stress–strain response, i.e., a different deformation style of the numerical sand or clay. Increased burial depth generates a second order influence, elevating peak shear strength. Loose and dense consolidation states generate a third order influence of the endmember level. The results replicate a range of sediment compositions, empirical behaviors and conditions. We propose a procedure to characterize sediments numerically. The numerical ‘sediments’ can be applied to simulate processes in sediments exhibiting variations in strength due to post-seismic consolidation, bioturbation or variations in sedimentation rates.


Sign in / Sign up

Export Citation Format

Share Document