A novel failure mode and effect analysis model for machine tool risk analysis

2019 ◽  
Vol 183 ◽  
pp. 173-183 ◽  
Author(s):  
Huai-Wei Lo ◽  
James J.H. Liou ◽  
Chun-Nen Huang ◽  
Yen-Ching Chuang
Author(s):  
Annamária Koncz ◽  
László Pokorádi ◽  
Zsolt Csaba Johanyák

The automotive industry is one of the most dynamically growing fields of the manufacturingarea. Besides this, it has very strict rules concerning safety and reliability. In our work, our aim is to point out the importance of the automotive industry (based on statistics) and the rules in connection with risk and root cause analysis. The most important risk analysis method is the Failure Mode and Effect Analysis (FMEA). According to standards and OEM regulations, FMEA is obligatory in the automotive sector. In our study, we summarise the area of FMEA usage, its types and process steps.


Author(s):  
Antônio Fernandes Costa Lima ◽  
Amanda Saba ◽  
Simone Berger ◽  
Silvia Sauaia Bianchini ◽  
Fernando Tobal Berssaneti

ABSTRACT This theoretical and reflexive study analyzed the risks related to the maintenance of patency of the Peripherally Inserted Central Catheter with the use of saline solution in comparison with saline-filled syringes, through the application of the Healthcare Failure Mode and Effect Analysis - HFMEA. The process was mapped, detailing the failure modes of each step. For the calculation of the Risk Priority Number, the severity and probability of the failure modes were analyzed. This analysis gave rise to the severity and probability matrix. Finally, actions to reduce the failure modes in the maintenance of patency were proposed, considering the use of saline-filled syringes in comparison to the use of saline ampoules. It was verified that the use of saline ampoules is associated with a greater risk, since it requires four stages more than saline-filled syringe does not, increasing the risk of contamination and the level of three different risks, which would result in additional hospital costs. The use of the saline-filled syringe would avoid risks that could negatively affect the patient’s health, the nursing professional and the health institution.


2012 ◽  
Vol 32 (3) ◽  
pp. 505-514 ◽  
Author(s):  
Sibel Ozilgen

The Failure Mode and Effect Analysis (FMEA) was applied for risk assessment of confectionary manufacturing, in whichthe traditional methods and equipment were intensively used in the production. Potential failure modes and effects as well as their possible causes were identified in the process flow. Processing stages that involve intensive handling of food by workers had the highest risk priority numbers (RPN = 216 and 189), followed by chemical contamination risks in different stages of the process. The application of corrective actions substantially reduced the RPN (risk priority number) values. Therefore, the implementation of FMEA (The Failure Mode and Effect Analysis) model in confectionary manufacturing improved the safety and quality of the final products.


Sign in / Sign up

Export Citation Format

Share Document