Distribution-free polynomial chaos expansion surrogate models for efficient structural reliability analysis

2021 ◽  
Vol 205 ◽  
pp. 107256
Author(s):  
HyeongUk Lim ◽  
Lance Manuel
Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1856
Author(s):  
Jeongeun Son ◽  
Yuncheng Du

This paper presents an algorithm for efficient uncertainty quantification (UQ) in the presence of many uncertainties that follow a nonstandard distribution (e.g., lognormal). Using the polynomial chaos expansion (PCE), the algorithm builds surrogate models of uncertainty as functions of a standard distribution (e.g., Gaussian variables). The key to build these surrogate models is to calculate PCE coefficients of model outputs, which is computationally challenging, especially when dealing with models defined by complex functions (e.g., nonpolynomial terms) under many uncertainties. To address this issue, an algorithm that integrates the PCE with the generalized dimension reduction method (gDRM) is utilized to convert the high-dimensional integrals, required to calculate the PCE coefficients of model predictions, into several lower-dimensional ones that can be rapidly solved with quadrature rules. The accuracy of the algorithm is validated with four examples in structural reliability analysis and compared to other existing techniques, such as Monte Carlo simulations and the least angle regression-based PCE. Our results show our algorithm provides accurate UQ results and is computationally efficient when dealing with many uncertainties, thus laying the foundation to address UQ in complex control systems.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1830
Author(s):  
Gullnaz Shahzadi ◽  
Azzeddine Soulaïmani

Computational modeling plays a significant role in the design of rockfill dams. Various constitutive soil parameters are used to design such models, which often involve high uncertainties due to the complex structure of rockfill dams comprising various zones of different soil parameters. This study performs an uncertainty analysis and a global sensitivity analysis to assess the effect of constitutive soil parameters on the behavior of a rockfill dam. A Finite Element code (Plaxis) is utilized for the structure analysis. A database of the computed displacements at inclinometers installed in the dam is generated and compared to in situ measurements. Surrogate models are significant tools for approximating the relationship between input soil parameters and displacements and thereby reducing the computational costs of parametric studies. Polynomial chaos expansion and deep neural networks are used to build surrogate models to compute the Sobol indices required to identify the impact of soil parameters on dam behavior.


Sign in / Sign up

Export Citation Format

Share Document