Global and local Kriging limit state approximation for time-dependent reliability-based design optimization through wrong-classification probability

Author(s):  
Chen Jiang ◽  
Yifang Yan ◽  
Dapeng Wang ◽  
Haobo Qiu ◽  
Liang Gao
2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Yao Wang ◽  
Shengkui Zeng ◽  
Jianbin Guo

Time-dependent reliability-based design optimization (RBDO) has been acknowledged as an advance optimization methodology since it accounts for time-varying stochastic nature of systems. This paper proposes a time-dependent RBDO method considering both of the time-dependent kinematic reliability and the time-dependent structural reliability as constrains. Polynomial chaos combined with the moving least squares (PCMLS) is presented as a nonintrusive time-dependent surrogate model to conduct uncertainty quantification. Wear is considered to be a critical failure that deteriorates the kinematic reliability and the structural reliability through the changing kinematics. According to Archard’s wear law, a multidiscipline reliability model including the kinematics model and the structural finite element (FE) model is constructed to generate the stochastic processes of system responses. These disciplines are closely coupled and uncertainty impacts are cross-propagated to account for the correlationship between the wear process and loads. The new method is applied to an airborne retractable mechanism. The optimization goal is to minimize the mean and the variance of the total weight under both of the time-dependent and the time-independent reliability constraints.


2012 ◽  
Vol 134 (12) ◽  
Author(s):  
Zequn Wang ◽  
Pingfeng Wang

A primary concern in practical engineering design is ensuring high system reliability throughout a product's lifecycle, which is subject to time-variant operating conditions and component deteriorations. Thus, the capability of dealing with time-dependent probabilistic constraints in reliability-based design optimization (RBDO) is of vital importance in practical engineering design applications. This paper presents a nested extreme response surface (NERS) approach to efficiently carry out time-dependent reliability analysis and determine the optimal designs. This approach employs the kriging model to build a nested response surface of time corresponding to the extreme value of the limit state function. The efficient global optimization (EGO) technique is integrated with the NERS approach to extract the extreme time responses of the limit state function for any given system design. An adaptive response prediction and model maturation (ARPMM) mechanism is developed based on the mean square error (MSE) to concurrently improve the accuracy and computational efficiency of the proposed approach. With the nested response surface of time, the time-dependent reliability analysis can be converted into the time-independent reliability analysis, and existing advanced reliability analysis and design methods can be used. The NERS approach is compared with existing time-dependent reliability analysis approaches and integrated with RBDO for engineered system design with time-dependent probabilistic constraints. Two case studies are used to demonstrate the efficacy of the proposed NERS approach.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Zhonglai Wang ◽  
Zhihua Wang ◽  
Shui Yu ◽  
Xiaowen Cheng

This paper presents a time-dependent concurrent reliability-based design optimization (TDC-RBDO) method integrating the time-variant B-distance index to improve the confidence level of design results with a small amount of experimental data. The time-variant B-distance index is first constructed using the extreme values of responses. The Hist Loop CDF (HLCDF) algorithm is then presented to calculate the time-variant B-distance index with high computational efficiency. The TDC-RBDO framework is provided by integrating the time-variant B-distance index and time-dependent reliability. The extreme value moment method (EVMM) is implemented to speed up the procedure of the TDC-RBDO. The case of a harmonic reducer is employed to elaborate on the proposed method.


Sign in / Sign up

Export Citation Format

Share Document