Isopropyl alcohol: A replacement for tertiary-butyl alcohol in pollen preparations

2014 ◽  
Vol 203 ◽  
pp. 9-11 ◽  
Author(s):  
Bronwen S. Whitney ◽  
Teresa Needham
1962 ◽  
Vol 2 (02) ◽  
pp. 129-144 ◽  
Author(s):  
L.W. Holm ◽  
A.K. Csaszar

Abstract A series of laboratory experiments was conducted in which oil was displaced from a porous medium by water-driven slugs of alcohol is or similar solvents. The solvents used were soluble to some degree in both oil and water and covered the range of solubilities from complete solubility in oil to complete solubility in water. Displacement experiments were conducted on 2- and 3 1/2-in. in diameter consolidated cores and 1- and 2-in. in diameter unconsolidated sand packs. The cores and sand packs ranged in length from 1 to 30 ft, and they were saturated with brine and crude or refined oils. The solvents used included ethyl alcohol, isopropyl alcohol (IPA), tertiary butyl alcohol (TBA), secondary butyl alcohol (SBA), n-amyl alcohol (NAA), methyl ethyl ketone, acetone and others. It was found that all of the oil present in a porous medium could be miscibly displaced by injecting a slug of mutual solvent and driving it with water. The oil-recovery efficiency was dependent uponthe relative solubilities of the solvent in oil and water, andthe distance traversed by the flood. For complete oil recovery from cores, a smaller amount of a preferentially oil-soluble solvent was required, compared to the amount of preferentially water-soluble solvent needed. The size of the solvent slug required varied inversely with the linear flooding-path length raised to the 0.65 power. Water-driven dual solvent combinations (an oil-soluble solvent slug followed by a water-soluble solvent slug) were found to effect complete oil recovery with less total solvent than any single solvent used. In these dual-solvent displacement experiments, the slug size required varied inversely with length raised to the 0.55 power. Based upon the experimental results, a theory was developed to describe the displacement of oil and water by mutual solvents, and equations are presented to predict the production history in a linear system. These equations take into account the properties of the solvents and the porous medium. Introduction Oil-recovery processes which utilize displacing fluids that are miscible with the reservoir fluids have been studied extensively in recent years. Because of the poor contact efficiency and high pressure requirements of the LPG-gas displacement process there has been considerable interest in the alcohol-water process, and a number of studies have been made on the recovery of oil through the use of solvents which are mutually soluble in oil and water. An investigation by Sievert, Dew and Conley indicated that the use of mutual solvents would be limited because the presence of water in a porous medium would cause a phase break in the leading edge of the displacing solvent. Their study also showed that, in consolidated cores containing only oil, the displacement of oil by a water- driven mutual-solvent slug of tertiary butyl alcohol (TBA) was affected by the viscosity ratios of the fluids involved. Gatlin and Slobod concluded that an isopropyl alcohol (IPA) slug acts as a miscible piston, completely displacing both oil and water until the alcohol content of the mixing zone falls below the concentration necessary to maintain miscibility. Their study was conducted on uniform unconsolidated sand packs. They concluded further that IPA could be used effectively to recover oil from a watered-out sand. In a paper by Taber, Kamath and Reed relating an investigation on sandstone cores, it was stated that the displacement of oil by mutual solvents, particularly. IPA, was not a miscible displacement and that no improvement in efficiency could be expected with increase in flooding-path length. However, their analytical analysis of the displacement mechanism using TBA is, in fact, one which indicates that the displacement is controlled by miscible mixing. SPEJ P. 129^


2006 ◽  
Vol 312 (1-2) ◽  
pp. 131-136 ◽  
Author(s):  
JingXia Cui ◽  
ChunLei Li ◽  
YingJie Deng ◽  
YongLi Wang ◽  
Wei Wang

2010 ◽  
Vol 260 (1) ◽  
pp. 77-83 ◽  
Author(s):  
E.A. Cohen ◽  
B.J. Drouin ◽  
E.A. Valenzuela ◽  
R.C. Woods ◽  
W. Caminati ◽  
...  

1961 ◽  
Vol 39 (7) ◽  
pp. 1424-1433 ◽  
Author(s):  
K. M. Bell ◽  
C. A. McDowell

The mercury-photosensitized oxidation of isobutane has been studied over a wide range of pressures of the hydrocarbon and oxygen, in a conventional static photochemical apparatus at the temperatures of 30 °C and 100 °C. The main products of the reaction are tertiary butyl hydroperoxide, together with tertiary butyl alcohol, acetone, and corresponding small quantities of formaldehyde and methyl alcohol. Isobutyraldehyde was also detected; ditertiary butyl peroxide being notably absent. Peroxide yields suggest that a reaction between an excited isobutane molecule and oxygen is important in the initiation processes and that peroxide is formed in the reaction[Formula: see text]


Sign in / Sign up

Export Citation Format

Share Document