photosensitized oxidation
Recently Published Documents


TOTAL DOCUMENTS

407
(FIVE YEARS 13)

H-INDEX

38
(FIVE YEARS 2)

2022 ◽  
Vol 22 (1) ◽  
pp. 273-293
Author(s):  
Beatrix Rosette Go Mabato ◽  
Yan Lyu ◽  
Yan Ji ◽  
Yong Jie Li ◽  
Dan Dan Huang ◽  
...  

Abstract. Vanillin (VL), a phenolic aromatic carbonyl abundant in biomass burning emissions, forms triplet excited states (3VL∗) under simulated sunlight leading to aqueous secondary organic aerosol (aqSOA) formation. Nitrate and ammonium are among the main components of biomass burning aerosols and cloud or fog water. Under atmospherically relevant cloud and fog conditions, solutions composed of either VL only or VL with ammonium nitrate were subjected to simulated sunlight irradiation to compare aqSOA formation via the direct photosensitized oxidation of VL in the absence and presence of ammonium nitrate. The reactions were characterized by examining the VL decay kinetics, product compositions, and light absorbance changes. Both conditions generated oligomers, functionalized monomers, and oxygenated ring-opening products, and ammonium nitrate promoted functionalization and nitration, likely due to its photolysis products (⚫OH, ⚫NO2, and NO2- or HONO). Moreover, a potential imidazole derivative observed in the presence of ammonium nitrate suggested that ammonium participated in the reactions. The majority of the most abundant products from both conditions were potential brown carbon (BrC) chromophores. The effects of oxygen (O2), pH, and reactants concentration and molar ratios on the reactions were also explored. Our findings show that O2 plays an essential role in the reactions, and oligomer formation was enhanced at pH <4. Also, functionalization was dominant at low VL concentrations, whereas oligomerization was favored at high VL concentrations. Furthermore, oligomers and hydroxylated products were detected from the oxidation of guaiacol (a non-carbonyl phenol) via VL photosensitized reactions. Last, potential aqSOA formation pathways via the direct photosensitized oxidation of VL in the absence and presence of ammonium nitrate were proposed. This study indicates that the direct photosensitized oxidation of VL may be an important aqSOA source in areas influenced by biomass burning and underscores the importance of nitrate in the aqueous-phase processing of aromatic carbonyls.


2021 ◽  
Vol 779 ◽  
pp. 146363
Author(s):  
Jean-François Rontani ◽  
Rémi Amiraux ◽  
Lukas Smik ◽  
Stuart G. Wakeham ◽  
Aurélien Paulmier ◽  
...  

2021 ◽  
Author(s):  
Beatrix Rosette Go Mabato ◽  
Yan Lyu ◽  
Yan Ji ◽  
Dan Dan Huang ◽  
Xue Li ◽  
...  

Abstract. Vanillin (VL), a phenolic aromatic carbonyl abundant in biomass burning emissions, forms triplet excited states (3VL*) under simulated sunlight leading to aqueous secondary organic aerosol (aqSOA) formation. This direct photosensitized oxidation of VL was compared with nitrate-mediated VL photo-oxidation under atmospherically relevant cloud and fog conditions, through examining the VL decay kinetics, product compositions, and light absorbance changes. The majority of the most abundant products from both VL photo-oxidation pathways were potential Brown carbon (BrC) chromophores. In addition, both pathways generated oligomers, functionalized monomers, and oxygenated ring-opening products, but nitrate promoted functionalization and nitration, which can be ascribed to its photolysis products (•OH, •NO2, and N(III), NO2- or HONO). Moreover, a potential imidazole derivative observed from nitrate-mediated VL photo-oxidation suggested that ammonium may be involved in the reactions. The effects of secondary oxidants from 3VL*, pH, the presence of volatile organic compounds (VOCs) and inorganic anions, and reactants concentration and molar ratios on VL photo-oxidation were also explored. Our findings show that the secondary oxidants (1O2, O2•-/•HO2, •OH) from the reactions of 3VL* and O2 play an essential role in VL photo-oxidation. Enhanced oligomer formation was noted at pH < 4 and in the presence of VOCs and inorganic anions, probably due to additional generation of radicals (•HO2 and CO3•-). Also, functionalization was dominant at low VL concentration, whereas oligomerization was favored at high VL concentration. Furthermore, guaiacol oxidation by photosensitized reactions of VL was observed to be more efficient relative to nitrate-mediated photo-oxidation. Lastly, potential VL photo-oxidation pathways under different reaction conditions were proposed. This study indicates that the direct photosensitized oxidation of VL, which nitrate photolysis products can further enhance, may be an important aqSOA source in areas influenced by biomass burning emissions.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 753
Author(s):  
Małgorzata B. Różanowska ◽  
Barbara Czuba-Pelech ◽  
John T. Landrum ◽  
Bartosz Różanowski

Dehydrolutein accumulates in substantial concentrations in the retina. The aim of this study was to compare antioxidant properties of dehydrolutein with other retinal carotenoids, lutein, and zeaxanthin, and their effects on ARPE-19 cells. The time-resolved detection of characteristic singlet oxygen phosphorescence was used to compare the singlet oxygen quenching rate constants of dehydrolutein, lutein, and zeaxanthin. The effects of these carotenoids on photosensitized oxidation were tested in liposomes, where photo-oxidation was induced by light in the presence of photosensitizers, and monitored by oximetry. To compare the uptake of dehydrolutein, lutein, and zeaxanthin, ARPE-19 cells were incubated with carotenoids for up to 19 days, and carotenoid contents were determined by spectrophotometry in cell extracts. To investigate the effects of carotenoids on photocytotoxicity, cells were exposed to light in the presence of rose bengal or all-trans-retinal. The results demonstrate that the rate constants for singlet oxygen quenching are 0.77 × 1010, 0.55 × 1010, and 1.23 × 1010 M−1s−1 for dehydrolutein, lutein, and zeaxanthin, respectively. Overall, dehydrolutein is similar to lutein or zeaxanthin in the protection of lipids against photosensitized oxidation. ARPE-19 cells accumulate substantial amounts of both zeaxanthin and lutein, but no detectable amounts of dehydrolutein. Cells pre-incubated with carotenoids are equally susceptible to photosensitized damage as cells without carotenoids. Carotenoids provided to cells together with the extracellular photosensitizers offer partial protection against photodamage. In conclusion, the antioxidant properties of dehydrolutein are similar to lutein and zeaxanthin. The mechanism responsible for its lack of accumulation in ARPE-19 cells deserves further investigation.


2021 ◽  
Vol 5 (1) ◽  
pp. 041-048
Author(s):  
Mantareva Vanya ◽  
Syuleyman Meliha ◽  
Slavova-Kazakova Adriana ◽  
Angelov Ivan ◽  
Durmus Mahmut

Four mestranol moieties were chemically linked to Zn(II) phthalocyanine (4) by cycloaddition “Click” reaction using a tetra-azidoethoxy substituted Zn(II)-phthalocyanine (3). The alkyl-azido coupling reaction was realized between azido groups of 3 and alkyl group of mestranol. The alkylation reaction was carried out to obtain cationic Zn(II) phthalocyanine derivative (5). The new compounds were chemically characterized by the known analytical methods. The absorption and fluorescence properties were studied in comparison. The absorption maxima of phthalocyanines 3, 4 and 5 were recorded at approx. shifts of 8 - 12 nm in the far- red region (680 - 684 nm) and the fluorescence maxima (692 - 693 nm) as compared to unsubstituted ZnPc (672 nm, 680 nm) in DMSO. The studies of singlet oxygen generation of 3, 4 and 5 showed relatively high values such as 0.52 for 3; 0.51 for 4 and 0.46 for 5. The fluorescence lifetime of 3.15 ns (3), 3.25 ns (4) and 3.46 ns (5) were determined with lower than the value than for the used standard ZnPc (3.99 ns). The high photo stability was observed for compounds 3, 4 and 5. In addition, the photosensitized oxidation of cholesterol was compared for 3 and 4 with much lower values of oxidation potential than for unsubstituted ZnPc which suggests that the substitution groups influenced on the photooxidation index of the target molecule.


Author(s):  
Malgorzata Rozanowska ◽  
Barbara Czuba-Pelech ◽  
John T. Landrum ◽  
Bartosz Rozanowski

Dehydrolutein accumulates in substantial concentrations in the retina. The aim of this study was to compare antioxidant properties of dehydrolutein with other retinal carotenoids, lutein and zeaxanthin, and their effects on ARPE-19 cells. The time-resolved detection of characteristic singlet oxygen phosphorescence was used to compare the singlet oxygen quenching rate constants of dehydrolutein, lutein, and zeaxanthin. The effects of these carotenoids on photosensitized oxidation were tested in liposomes, where photooxidation was induced by light in the presence of photosensitizers, and monitored by oximetry. To compare the uptake of dehydrolutein, lutein, and zeaxanthin, ARPE-19 cells were incubated with carotenoids for up to 19 days, and carotenoid contents were determined by spectrophotometry in cell extracts. To investigate the effects of carotenoids on phototocytotoxicity, cells were exposed to light in the presence of rose bengal or all-trans-retinal. The results demonstrate that the rate constants for singlet oxygen quenching are 0.77x1010, 0.55x1010, and 1.23x1010 M-1s-1 for dehydrolutein, lutein and zeaxanthin, respectively. Overall, dehydrolutein is similar to lutein or zeaxanthin in protection of lipids against photosensitized oxidation. ARPE-19 cells accumulate substantial amounts of both zeaxanthin and lutein but no detectable amounts of dehydrolutein. Cells pre-incubated with carotenoids are equally susceptible to photosensitized damage as cells without carotenoids. Carotenoids provided to cells together with the extracellular photosensitizers offer partial protection against photodamage. In conclusion, the antioxidant properties of dehydrolutein are similar to lutein and zeaxanthin. The mechanism responsible for its lack of accumulation in ARPE-19 cells deserves further investigation.


Author(s):  
Carolina Castaño ◽  
Andrés H. Thomas ◽  
Carolina Lorente

Sign in / Sign up

Export Citation Format

Share Document