scholarly journals Charged particle dynamics in the vicinity of black hole from vector-tensor theory of gravity immersed in an external magnetic field

2019 ◽  
Vol 14 ◽  
pp. 102418
Author(s):  
Azeem Nazar ◽  
Saqib Hussain ◽  
Adnan Aslam ◽  
Takasar Hussain ◽  
Muhammad Ozair
2020 ◽  
Vol 30 ◽  
pp. 100648 ◽  
Author(s):  
Sanjar Shaymatov ◽  
Jaroslav Vrba ◽  
Daniele Malafarina ◽  
Bobomurat Ahmedov ◽  
Zdeněk Stuchlík

Author(s):  
Bobur Turimov

Astrophysical accretion processes near the black hole candidates, such as active galactic nuclei (AGN), X-ray binary (XRB), and other astrophysical sources, are associated with high-energetic emission of radiation of relativistic particles and outflows (winds and/or jets). It is widely believed that the magnetic field plays a very important role to explain such high energetic processes in the vicinity of those astrophysical sources. In the present research note, we propose that the black hole is embedded in an asymptotically uniform magnetic field. We investigate the dynamical motion of charged particles in the vicinity of a weakly magnetized black hole. We show that in the presence of the magnetic field, the radius of the innermost stable circular orbits (ISCO) for a charged particle is located close to the black hole’s horizon. The fundamental frequencies, such as Keplerian and epicyclic frequencies of the charged particle are split into two parts due to the magnetic field, as an analog of the Zeeman effect. The orbital velocity of the charged particle measured by a local observer has been computed in the presence of the external magnetic field. We also present an analytical expression for the four-acceleration of the charged particle orbiting around black holes. Finally, we determine the intensity of the radiating charged accelerating relativistic particle orbiting around the magnetized black hole.


1996 ◽  
Vol 11 (25) ◽  
pp. 2037-2045 ◽  
Author(s):  
JEONG-WON HO ◽  
YONGDUK KIM ◽  
YOUNG-JAI PARK

We investigate whether the gravitational thermodynamic properties of the scalar-tensor theory of gravity are affected by the conformal transformation or not. As an explicit example, we consider an electrically charged static spherical black hole in four-dimensional low energy effective theory of bosonic string.


Author(s):  
Muhammad Rizwan ◽  
Tooba Feroze

In this paper, we study the effects of the external magnetic field on the Lense–Thirring (LT) precession of a test gyroscope attached to an observer in magnetized black hole spacetime. For this, we consider a Kerr–Newman black hole embedded in the external magnetic field. The LT precession of a test gyroscope diverges near the ergosurface and remains finite everywhere outside the ergosurface. It is seen that by increasing the external magnetic field, the LT precession frequency in the region of large [Formula: see text] decreases as [Formula: see text] increases, while the precession frequency in the region of small [Formula: see text] increases as [Formula: see text] increases, whereas it increases with increasing the charge of the black hole. The LT precession of a test gyroscope attached to observers moving along the directions close to the polar axis is greater than that of the observer moving in the equatorial plane.


2005 ◽  
Vol 20 (14) ◽  
pp. 1077-1085 ◽  
Author(s):  
MARICEL AGOP ◽  
EUGEN RADU ◽  
REINOUD SLAGTER

The dilatonic Ernst solution describing a Schwarzschild black hole immersed in a background magnetic field is generalized by including a Liouville-type potential in the action principle. We prove that the thermodynamic properties of this new black hole dilaton solution are unaffected by an external magnetic field passing through it.


2003 ◽  
Vol 18 (12) ◽  
pp. 2153-2157 ◽  
Author(s):  
A. A. Bytsenko ◽  
Yu. P. Goncharov

It is discussed that the Ernst–Schwarzschild metric describing a nonrotating black hole in the external magnetic field admits the solutions of the Dirac monopole types for the corresponding Maxwell equations. The given solutions are obtained in explicit form and a possible influence of the conforming Dirac monopoles on Hawking radiation is also outlined.


Sign in / Sign up

Export Citation Format

Share Document