Dynamic target searching and tracking with swarm robots based on stigmergy mechanism

2019 ◽  
Vol 120 ◽  
pp. 103251 ◽  
Author(s):  
Qirong Tang ◽  
Zhipeng Xu ◽  
Fangchao Yu ◽  
Zhongqun Zhang ◽  
Jingtao Zhang
Author(s):  
Qirong Tang ◽  
Lei Zhang ◽  
Wei Luo ◽  
Lu Ding ◽  
Fangchao Yu ◽  
...  

Author(s):  
Nur Aisyah Syafinaz ◽  
Dwi Pebrianti ◽  
Luhur Bayuaji ◽  
Rosyati Hamid ◽  
Nurnajmin Qasrina Ann

A swarm robotics system can consists of at least two or up to hundreds or thousands number of robots. To build a system that is able to perform target searching task, it needs a robust algoritm and communication strategy. A wrong strategy can lead to unsatisfactory performance in which the swarm robots would unable to move efficiently and arrive at the target position precisely. This work aims to develop a new method for target searching strategy for swarm robotics system by adapting Extended Bat Algorithm (EBA) to the system. EBA is the low level hybrid algorithm of Bat Algorithm (BA) and Spiral Dynamic Algoruthm (SDA), and therefore its exploration and exploitation method is better than BA and SDA. EBA had proven its ability to solve general mathematical problem, however, for swarm robotics system application, its performance and effectiveness still needs to be comprehensively investigated. The investigation result shows that EBA can prove its potentiality to develop the best target searching strategy to the swarm robotics system with 5 number of iterations within 49 seconds. This is found to be the lowest number of iterations in the shortest of time. The accuracy is 99% to arrive at the desired location. Hence, the proposed EBA method is able to perform a target searching task for swarm robotics system.


2021 ◽  
Vol 11 (5) ◽  
pp. 2383
Author(s):  
Zool Hilmi Ismail ◽  
Mohd Ghazali Mohd Hamami

Target searching is a well-known but difficult problem in many research domains, including computational intelligence, swarm intelligence, and robotics. The main goal is to search for the targets within the specific boundary with the minimum time that is required and the obstacle avoidance that has been equipped in place. Swarm robotics (SR) is an extension of the multi-robot system that particularly discovers a concept of coordination, collaboration, and communication among a large number of robots. Because the robots are collaborating and working together, the task that is given will be completed faster compared to using a single robot. Thus, searching for single or multiple targets with swarm robots is a significant and realistic approach. Robustness, flexibility, and scalability, which are supported by distributed sensing, also make the swarm robots strategy suitable for target searching problems in real-world applications. The purpose of this article is to deliver a systematic literature review of SR strategies that are applied to target search problems, so as to show which are being explored in the fields as well as the performance of current state-of-the-art SR approaches. This review extracts data from four scientific databases and filters with two established high-indexed databases (Scopus and Web of Science). Notably, 25 selected articles fell under two main categories in environment complexity, namely empty space and cluttered. There are four strategies which have been compiled for both empty space and cluttered categories, namely, bio-inspired mechanism, behavior-based mechanism, random strategy mechanism, and hybrid mechanism.


Automatica ◽  
2020 ◽  
Vol 118 ◽  
pp. 109030 ◽  
Author(s):  
Johannes Köhler ◽  
Matthias A. Müller ◽  
Frank Allgöwer

2013 ◽  
Vol 683 ◽  
pp. 824-827
Author(s):  
Tian Ding Chen ◽  
Chao Lu ◽  
Jian Hu

With the development of science and technology, target tracking was applied to many aspects of people's life, such as missile navigation, tanks localization, the plot monitoring system, robot field operation. Particle filter method dealing with the nonlinear and non-Gaussian system was widely used due to the complexity of the actual environment. This paper uses the resampling technology to reduce the particle degradation appeared in our test. Meanwhile, it compared particle filter with Kalman filter to observe their accuracy .The experiment results show that particle filter is more suitable for complex scene, so particle filter is more practical and feasible on target tracking.


Sign in / Sign up

Export Citation Format

Share Document