Accuracy assessment of sea-ice concentrations from MODIS using in-situ measurements

2005 ◽  
Vol 95 (2) ◽  
pp. 139-149 ◽  
Author(s):  
C. Drüe ◽  
G. Heinemann
2011 ◽  
Vol 30 (1) ◽  
pp. 7218 ◽  
Author(s):  
Polona Rozman ◽  
Jens A. Hölemann ◽  
Thomas Krumpen ◽  
Rüdiger Gerdes ◽  
Cornelia Köberle ◽  
...  

2018 ◽  
Author(s):  
Daniel Price ◽  
Iman Soltanzadeh ◽  
Wolfgang Rack

Abstract. Knowledge of the snow depth distribution on Antarctic sea ice is poor but is critical to obtaining sea ice thickness from satellite altimetry measurements of freeboard. We examine the usefulness of various snow products to provide snow depth information over Antarctic fast ice with a focus on a novel approach using a high-resolution numerical snow accumulation model (SnowModel). We compare this model to results from ECMWF ERA-Interim precipitation, EOS Aqua AMSR-E passive microwave snow depths and in situ measurements at the end of the sea ice growth season. The fast ice was segmented into three areas by fastening date and the onset of snow accumulation was calibrated to these dates. SnowModel falls within 0.02 m snow water equivalent (swe) of in situ measurements across the entire study area, but exhibits deviations of 0.05 m swe from these measurements in the east where large topographic features appear to have caused a positive bias in snow depth. AMSR-E provides swe values half that of SnowModel for the majority of the sea ice growth season. The coarser resolution ERA-Interim, not segmented for sea ice freeze up area reveals a mean swe value 0.01 m higher than in situ measurements. These various snow datasets and in situ information are used to infer sea ice thickness in combination with CryoSat-2 (CS-2) freeboard data. CS-2 is capable of capturing the seasonal trend of sea ice freeboard growth but thickness results are highly dependent on the assumptions involved in separating snow and ice freeboard. With various assumptions about the radar penetration into the snow cover, the sea ice thickness estimates vary by up to 2 m. However, we find the best agreement between CS-2 derived and in situ thickness when a radar penetration of 0.05-0.10 m into the snow cover is assumed.


2015 ◽  
Vol 61 (229) ◽  
pp. 864-874 ◽  
Author(s):  
Jinlong Chao ◽  
Chengyu Liu ◽  
Yingjun Xu ◽  
Wei Gu ◽  
Ying Li ◽  
...  

AbstractWe report on the radiative transfer process and optical properties of sea ice in the thermal infrared (TIR) band, presenting two new linear kernel driver models (Relative Emissivity Distribution Function, REDF) that describe TIR emission characteristics of smooth and rough ice. In order to test the models and determine the necessary coefficients, in situ measurements from the Bohai Sea were carried out during the 2011/12 and 2012/13 boreal winters. The results show that the relative emissivity of smooth sea ice decreases along with increasing viewing zenith angle, and the shape of the relative emissivity curve is similar to that of an ideal plane. Affected by parameters such as roughness and surface temperature distribution, the anisotropy of relative emissivity of sea ice with a high degree of roughness is stronger relative to the cosine emitter. The model coefficients were also obtained using a robust regression method based on the measured data. The presented models are more practical than the numerical radiative transfer model and can be used for multi-angular TIR remote sensing.


2019 ◽  
Vol 13 (4) ◽  
pp. 1409-1422
Author(s):  
Daniel Price ◽  
Iman Soltanzadeh ◽  
Wolfgang Rack ◽  
Ethan Dale

Abstract. Knowledge of the snow depth distribution on Antarctic sea ice is poor but is critical to obtaining sea ice thickness from satellite altimetry measurements of the freeboard. We examine the usefulness of various snow products to provide snow depth information over Antarctic fast ice in McMurdo Sound with a focus on a novel approach using a high-resolution numerical snow accumulation model (SnowModel). We compare this model to results from ECMWF ERA-Interim precipitation, EOS Aqua AMSR-E passive microwave snow depths and in situ measurements at the end of the sea ice growth season in 2011. The fast ice was segmented into three areas by fastening date and the onset of snow accumulation was calibrated to these dates. SnowModel captures the spatial snow distribution gradient in McMurdo Sound and falls within 2 cm snow water equivalent (s.w.e) of in situ measurements across the entire study area. However, it exhibits deviations of 5 cm s.w.e. from these measurements in the east where the effect of local topographic features has caused an overestimate of snow depth in the model. AMSR-E provides s.w.e. values half that of SnowModel for the majority of the sea ice growth season. The coarser-resolution ERA-Interim produces a very high mean s.w.e. value 20 cm higher than the in situ measurements. These various snow datasets and in situ information are used to infer sea ice thickness in combination with CryoSat-2 (CS-2) freeboard data. CS-2 is capable of capturing the seasonal trend of sea ice freeboard growth but thickness results are highly dependent on what interface the retracked CS-2 height is assumed to represent. Because of this ambiguity we vary the proportion of ice and snow that represents the freeboard – a mathematical alteration of the radar penetration into the snow cover – and assess this uncertainty in McMurdo Sound. The ranges in sea ice thickness uncertainty within these bounds, as means of the entire growth season, are 1.08, 4.94 and 1.03 m for SnowModel, ERA-Interim and AMSR-E respectively. Using an interpolated in situ snow dataset we find the best agreement between CS-2-derived and in situ thickness when this interface is assumed to be 0.07 m below the snow surface.


2013 ◽  
Vol 54 (62) ◽  
pp. 253-260 ◽  
Author(s):  
Caixin Wang ◽  
Liqiong Shi ◽  
Sebastian Gerland ◽  
Mats A. Granskog ◽  
Angelika H.H. Renner ◽  
...  

AbstractRijpfjorden (808 N, 22° E) is a high-Arctic fjord on Nordaustlandet in the Svalbard archipelago. To monitor the thermodynamic change of sea ice in spring, an ice mass-balance buoy (IMB) was deployed for 2.5 months (10 April–26 June 2011), with accompanying in situ measurements, sea-ice sampling on three occasions and ice-core analysis. Uncertainties and sources of error in in situ measurements and IMB data are discussed. The in situ measurements, ice-core analysis and IMB data together depict the development of snow and ice in spring. Snow and ice thickness exhibited large spatial and temporal variability. After relatively stable conditions with only little change in ice thickness and accumulation of snow, a layer of superimposed ice ∼0.06 m thick formed at the snow-ice interface due to refreezing of snow meltwater in late spring. Ice thickness (except for growth of superimposed ice) did not change significantly based on in situ observations. In contrast, the under-ice sonar data from the IMB show reflections from a layer deeper than the underside of the ice during the melting phase. This can be explained as a reflection of the sonar pulses from an interface between a freshwater layer under the ice and more saline water below, or as a false-bottom formation.


2006 ◽  
Vol 44 ◽  
pp. 217-223 ◽  
Author(s):  
J.E. Reid ◽  
A. Pfaffling ◽  
A.P. Worby ◽  
J.R. Bishop

AbstractAirborne, Ship-borne and Surface low-frequency electromagnetic (EM) methods have become widely applied to measure Sea-ice thickness. EM responses measured over Sea ice depend mainly on the Sea-water conductivity and on the height of the Sensor above the Sea-ice–sea-water interface, but may be Sensitive to the Sea-ice conductivity at high excitation frequencies. We have conducted in Situ measurements of direct-current conductivity of Sea ice using Standard geophysical geoelectrical methods. Sea-ice thickness estimated from the geoelectrical Sounding data was found to be consistently underestimated due to the pronounced vertical-to-horizontal conductivity anisotropy present in level Sea ice. At five Sites, it was possible to determine the approximate horizontal and vertical conductivities from the Sounding data. The average horizontal conductivity was found to be 0.017 Sm–1, and that in the vertical direction to be 9–12 times higher. EM measurements over level Sea ice are Sensitive only to the horizontal conductivity. Numerical modelling has Shown that the assumption of zero Sea-ice conductivity in interpretation of airborne EM data results in a negligible error in interpreted thickness for typical level Antarctic Sea ice.


Author(s):  
Anthony P. Worby ◽  
Thorsten Markus ◽  
Adam D. Steer ◽  
Victoria I. Lytle ◽  
Robert A. Massom

2020 ◽  
pp. 1-17
Author(s):  
Branden Walker ◽  
Evan J. Wilcox ◽  
Philip Marsh

Arctic tundra environments are characterized by a spatially heterogeneous end-of-winter snow depth resulting from wind transport and deposition. Traditional methods for measuring snow depth do not accurately capture such heterogeneity at catchment scales. In this study we address the use of high-resolution, spatially distributed, snow depth data for Arctic environments through the application of unmanned aerial systems (UASs). We apply Structure-from-Motion photogrammetry to images collected using a fixed-wing UAS to produce a 1 m resolution snow depth product across seven areas of interest (AOIs) within the Trail Valley Creek Research Watershed, Northwest Territories, Canada. We evaluated these snow depth products with in situ measurements of both the snow surface elevation (n = 8434) and snow depth (n = 7191). When all AOIs were averaged, the RMSE of the snow surface elevation models was 0.16 m (<0.01 m bias), similar to the snow depth product (UASSD) RMSE of 0.15 m (+0.04 m bias). The distribution of snow depth between in situ measurements and UASSD was similar along the transects where in situ snow depth was collected, although similarity varies by AOI. Finally, we provide a discussion of factors that may influence the accuracy of the snow depth products including vegetation, environmental conditions, and study design.


Sign in / Sign up

Export Citation Format

Share Document