fast ice
Recently Published Documents


TOTAL DOCUMENTS

416
(FIVE YEARS 75)

H-INDEX

43
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Meghana Ranganathan ◽  
Jack-William Barotta ◽  
Colin Meyer ◽  
Brent Minchew

Liquid water within glacier ice and at the glacier beds exerts a significant control on ice flow and glacier stability through a number of processes, including altering the rheology of the ice and lubricating the bed. Some of this water is generated as melt in regions of rapid deformation, including shear margins, due to heating by viscous dissipation. However, how much meltwater is generated and drained from shear margins remains unclear. Here, we apply a model that describes the evolution of ice temperature, melting, and water transport within deforming ice to estimate the flux of meltwater from shear margins in glaciers. We derive analytical expressions for ice temperature, effective pressure, and porosity in zones of temperate ice, and we apply this model to estimate the flux from three Antarctic glaciers: Bindschadler and MacAyeal Ice Streams, Pine Island Glacier, and Byrd Glacier. We show that the flux of meltwater from shear margins in these regions may be as significant as the meltwater produced by frictional heating at the bed, with average fluxes of ~1000-2000 m^3 yr^ -1. This contribution of shear heating to meltwater flux at the bed may thus affect both the rheology of the ice as well as sliding at the bed, both key controls on fast ice flow.


2021 ◽  
Vol 8 ◽  
Author(s):  
Igor A. Dmitrenko ◽  
Vladislav Y. Petrusevich ◽  
Ksenia Kosobokova ◽  
Alexander S. Komarov ◽  
Caroline Bouchard ◽  
...  

The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems and the marine carbon pump. The dramatic changes in the Arctic environment in recent years, mainly associated with sea-ice decline, may have wide significance for the Arctic shelf ecosystems including DVM. Observations have revealed the occurrence of DVM in ice-covered Arctic waters, however, there have yet to be observations of DVM from the extensive Siberian shelves in the Eurasian Arctic and no analysis of how the sea-ice decline may affect DVM. Here, 2 yearlong time series of acoustic backscatter, collected by moored acoustic Doppler current profilers in the eastern Laptev Sea from August 1998 to August 1999, were used to examine the annual cycle of acoustic scattering, and therefore the annual cycle of DVM in the area. The acoustic time series were used along with atmospheric and oceanic reanalysis and satellite data. Our observations show that DVM did not occur during polar night and polar day, but is active during the spring and fall transition periods when there is a diurnal cycle in light conditions. DVM began beneath the fast ice at the end of polar night and increased in intensity through spring. However, the formation of a large polynya along the landfast ice edge in late March 1999 caused DVM to abruptly cease near the fast ice edge, while DVM persisted through spring to the start of polar day at the onshore mooring. We associate this cessation of synchronized DVM ∼1 month ahead of polar day with a predator-avoidance behavior of zooplankton in response to higher polar cod abundance near the polynya. During polar day, the intensity of acoustic scattering was attributed to the riverine suspended particles. Overall, our results highlight the occurrence of DVM on the Siberian shelves, the cessation of synchronized DVM when a polynya opens up nearby, and the potential impact of significant trends toward a more extensive Laptev Sea polynya as part of changing ice conditions in the Eurasian Arctic and their impact on the Arctic shelf ecology.


2021 ◽  
Vol 13 (24) ◽  
pp. 5089
Author(s):  
Saisai Hou ◽  
Jiuxin Shi

Based on satellite remote sensing, several polynyas have been found in Prydz Bay, East Antarctica. Compared with the Mackenzie Bay Polynya, the only polynya in the west, the polynyas in eastern Prydz Bay have a larger area and higher ice production, but have never been studied individually. In this study, four recurrent polynyas were identified in eastern Prydz Bay from sea ice concentration data during 2002–2011. Their areas generally exhibit synchronous temporal variations and have good correlation with wind speed, which indicates that they are primarily wind-driven polynyas that need at least one stationary ice barrier to block the inflow of drifting sea ice. The components of the ice barriers of these four polynyas were identified through comparison of satellite remote sensing visible images and synthetic aperture radar images. All types of fast ice, including landfast ice, offshore fast ice and ice fingers serving as ice barriers for these polynyas are anchored by an assemblage of small icebergs and have an approximately year-round period of variations that also regulates the variability of polynyas. The movement and grounding of giant icebergs near the polynyas significantly affects the development of the polynyas. The results of this study illustrate the important impact of icebergs on Antarctic wind-driven polynyas and the formation of dense shelf water.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Julia Christmann ◽  
Veit Helm ◽  
Shfaqat Abbas Khan ◽  
Thomas Kleiner ◽  
Ralf Müller ◽  
...  

AbstractFuture projections of global mean sea level change are uncertain, partly because of our limited understanding of the dynamics of Greenland’s outlet glaciers. Here we study Nioghalvfjerdsbræ, an outlet glacier of the Northeast Greenland Ice Stream that holds 1.1 m sea-level equivalent of ice. We use GPS observations and numerical modelling to investigate the role of tides as well as the elastic contribution to glacier flow. We find that ocean tides alter the basal lubrication of the glacier up to 10 km inland of the grounding line, and that their influence is best described by a viscoelastic rather than a viscous model. Further inland, sliding is the dominant mechanism of fast glacier motion, and the ice flow induces persistent elastic strain. We conclude that elastic deformation plays a role in glacier flow, particularly in areas of steep topographic changes and fast ice velocities.


2021 ◽  
Author(s):  
◽  
Andrew Robert Martin

<p>Productivity in the Southern Ocean reflects both the spatial and temporal dynamics of the sea ice ecosystem, as well as the complex cycling of energy through the microbial community. Marine bacteria are thought to be integral to trophodynamics and the functioning of a microbial loop within the ice matrix, but there is no clear understanding of the distribution and diversity of bacteria or the importance of bacterial production. Understanding the bacterial response to environmental change in the sea ice ecosystem may provide an insight into the potential changes to the physical oceanography and ecology of the Southern Ocean. In this study, a multivariate statistical approach was used to compare the distribution and abundance of bacteria occurring in pack ice at the tongue of the Mertz Glacier (George V Coast, Antarctica) with bacteria from fast ice at Cape Hallett (Victoria Land coastline, Antarctica). Estimates of bacterial abundance were derived using both epifluorescence microscopy and flow cytometry and correlated with algal and chlorophyll a data. Significant differences in the vertical distribution of cells within the ice were observed between the Mertz Glacier and Cape Hallett, but no overall difference in cell abundance was found between the two locations with 7.6 ± 1.2 x 109 cells per m2 and 8.7 ± 1.6 x 109 cells per m2 respectively. Bacteria and algae were positively correlated in pack ice of the Mertz Glacier indicating a functional microbial loop, but no discernable relationship was exhibited in multiyear ice at Cape Hallett. These findings support the general consensus that the generation of bacterial biomass from algal-derived dissolved organic matter is highly variable across seasons and habitats. The tetrazolium salt 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was used to investigate the bacterial response to experimentally induced changes in light and salinity in fast ice at Cape Hallett. Two distinct assemblages were examined; the brine channel assemblage near the surface of the ice and the interstitial or bottom assemblage. This study presents preliminary evidence that the metabolic activity of brine bacteria is influenced by light stimulus, most likely as a response to increased levels of algal-derived dissolved organic matter. No cells were deemed to be metabolically active when incubated in the dark, while on average thirty-eight percent of the cells incubated at 150 =mol photons m-2 s-1 were metabolically active. Additional results indicate that salt concentration is more significant than light irradiance in influencing the metabolic response of cells present in the interstitial region of the sea ice profile. When acclimated over a period of eight hours, cells exhibited a tolerance to changing saline concentrations, but after a further eight hours there is some evidence to suggest activity is reduced at either end of the saline regime. Bacterial metabolic activity in each assemblage is thus thought to reflect the fundamentally different light and saline environments within the sea ice. Metabolic probes such as CTC will prove useful in providing a mechanistic understanding of productivity and trophodynamics in the Antarctic coastal ecosystem, and may contribute to prognostic models for qualifying the resilience of the microbial community to climate change.</p>


2021 ◽  
Author(s):  
◽  
Andrew Robert Martin

<p>Productivity in the Southern Ocean reflects both the spatial and temporal dynamics of the sea ice ecosystem, as well as the complex cycling of energy through the microbial community. Marine bacteria are thought to be integral to trophodynamics and the functioning of a microbial loop within the ice matrix, but there is no clear understanding of the distribution and diversity of bacteria or the importance of bacterial production. Understanding the bacterial response to environmental change in the sea ice ecosystem may provide an insight into the potential changes to the physical oceanography and ecology of the Southern Ocean. In this study, a multivariate statistical approach was used to compare the distribution and abundance of bacteria occurring in pack ice at the tongue of the Mertz Glacier (George V Coast, Antarctica) with bacteria from fast ice at Cape Hallett (Victoria Land coastline, Antarctica). Estimates of bacterial abundance were derived using both epifluorescence microscopy and flow cytometry and correlated with algal and chlorophyll a data. Significant differences in the vertical distribution of cells within the ice were observed between the Mertz Glacier and Cape Hallett, but no overall difference in cell abundance was found between the two locations with 7.6 ± 1.2 x 109 cells per m2 and 8.7 ± 1.6 x 109 cells per m2 respectively. Bacteria and algae were positively correlated in pack ice of the Mertz Glacier indicating a functional microbial loop, but no discernable relationship was exhibited in multiyear ice at Cape Hallett. These findings support the general consensus that the generation of bacterial biomass from algal-derived dissolved organic matter is highly variable across seasons and habitats. The tetrazolium salt 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was used to investigate the bacterial response to experimentally induced changes in light and salinity in fast ice at Cape Hallett. Two distinct assemblages were examined; the brine channel assemblage near the surface of the ice and the interstitial or bottom assemblage. This study presents preliminary evidence that the metabolic activity of brine bacteria is influenced by light stimulus, most likely as a response to increased levels of algal-derived dissolved organic matter. No cells were deemed to be metabolically active when incubated in the dark, while on average thirty-eight percent of the cells incubated at 150 =mol photons m-2 s-1 were metabolically active. Additional results indicate that salt concentration is more significant than light irradiance in influencing the metabolic response of cells present in the interstitial region of the sea ice profile. When acclimated over a period of eight hours, cells exhibited a tolerance to changing saline concentrations, but after a further eight hours there is some evidence to suggest activity is reduced at either end of the saline regime. Bacterial metabolic activity in each assemblage is thus thought to reflect the fundamentally different light and saline environments within the sea ice. Metabolic probes such as CTC will prove useful in providing a mechanistic understanding of productivity and trophodynamics in the Antarctic coastal ecosystem, and may contribute to prognostic models for qualifying the resilience of the microbial community to climate change.</p>


2021 ◽  
Vol 15 (10) ◽  
pp. 4999-5006
Author(s):  
Greg H. Leonard ◽  
Kate E. Turner ◽  
Maren E. Richter ◽  
Maddy S. Whittaker ◽  
Inga J. Smith

Abstract. McMurdo Sound sea ice can generally be partitioned into two regimes: (1) a stable fast-ice cover, forming south of approximately 77.6∘ S around March–April and then breaking out the following January–February, and (2) a more dynamic region north of 77.6∘ S that the McMurdo Sound and Ross Sea polynyas regularly impact. In 2019, a stable fast-ice cover formed unusually late due to repeated break-out events. We analyse the 2019 sea-ice conditions and relate them to a modified storm index (MSI), a proxy for southerly wind events. We find there is a strong correlation between the timing of break-out events and several unusually large MSI events.


2021 ◽  
Vol 40 (10) ◽  
pp. 84-96
Author(s):  
Jialiang Zhu ◽  
Yilin Liu ◽  
Xiaoyu Wang ◽  
Tao Li

Sign in / Sign up

Export Citation Format

Share Document