scholarly journals Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning

2010 ◽  
Vol 114 (7) ◽  
pp. 1403-1415 ◽  
Author(s):  
Felix Morsdorf ◽  
Anders Mårell ◽  
Benjamin Koetz ◽  
Nathalie Cassagne ◽  
Francois Pimont ◽  
...  
Author(s):  
Francesca Bottalico ◽  
Gherardo Chirici ◽  
Raffaello Giannini ◽  
Salvatore Mele ◽  
Matteo Mura ◽  
...  

2020 ◽  
Vol 12 (10) ◽  
pp. 1681
Author(s):  
Bingxiao Wu ◽  
Guang Zheng ◽  
Weimin Ju

Laser return intensity (LRI) information obtained from airborne laser scanning (ALS) data has been used to classify land cover types and to reveal canopy physiological features. However, the sensor-related and environmental parameters may introduce noise. In this study, we developed a local median filtering (LMF) method to point-by-point correct the LRI information. For each point, we deduced the reference variation range for its LRI. Then, we replaced the outliers of LRI with their local median values. To evaluate the LMF method, we assessed the discrepancy of LRI information from the same and diverse land cover types. Moreover, we used the corrected LRI to distinguish points from grass, road, and bare land, which were classified as ground type in ALS data. The results show that using the LMF method could increase the similarity of pointwise LRI from the same land cover type and the discrepancy of those from different kinds of targets. Using the LMF-corrected LRI could improve the overall classification accuracy of three land cover types by about 3% (all over 81%, κ ≥ 0.73, p < 0.05), compared to those using the original and range-normalized LRI. The sensor-related metrics brought more noise to the original LRI information than the environmental factors. Using the LMF method could effectively correct LRI information from historical ALS datasets.


2018 ◽  
Vol 51 (1) ◽  
pp. 795-807 ◽  
Author(s):  
Francesca Giannetti ◽  
Nicola Puletti ◽  
Valerio Quatrini ◽  
Davide Travaglini ◽  
Francesca Bottalico ◽  
...  

2011 ◽  
Vol 5 (3) ◽  
pp. 196-208 ◽  
Author(s):  
D. F. Laefer ◽  
T. Hinks ◽  
H. Carr ◽  
L. Truong-Hong

2021 ◽  
Vol 13 (4) ◽  
pp. 1917
Author(s):  
Alma Elizabeth Thuestad ◽  
Ole Risbøl ◽  
Jan Ingolf Kleppe ◽  
Stine Barlindhaug ◽  
Elin Rose Myrvoll

What can remote sensing contribute to archaeological surveying in subarctic and arctic landscapes? The pros and cons of remote sensing data vary as do areas of utilization and methodological approaches. We assessed the applicability of remote sensing for archaeological surveying of northern landscapes using airborne laser scanning (LiDAR) and satellite and aerial images to map archaeological features as a basis for (a) assessing the pros and cons of the different approaches and (b) assessing the potential detection rate of remote sensing. Interpretation of images and a LiDAR-based bare-earth digital terrain model (DTM) was based on visual analyses aided by processing and visualizing techniques. 368 features were identified in the aerial images, 437 in the satellite images and 1186 in the DTM. LiDAR yielded the better result, especially for hunting pits. Image data proved suitable for dwellings and settlement sites. Feature characteristics proved a key factor for detectability, both in LiDAR and image data. This study has shown that LiDAR and remote sensing image data are highly applicable for archaeological surveying in northern landscapes. It showed that a multi-sensor approach contributes to high detection rates. Our results have improved the inventory of archaeological sites in a non-destructive and minimally invasive manner.


2021 ◽  
Vol 491 ◽  
pp. 119225
Author(s):  
Einari Heinaro ◽  
Topi Tanhuanpää ◽  
Tuomas Yrttimaa ◽  
Markus Holopainen ◽  
Mikko Vastaranta

Sign in / Sign up

Export Citation Format

Share Document