scholarly journals Independent uncertainty estimates for coefficient based sea surface temperature retrieval from the Along-Track Scanning Radiometer instruments

2016 ◽  
Vol 178 ◽  
pp. 213-222 ◽  
Author(s):  
C.E. Bulgin ◽  
O. Embury ◽  
G. Corlett ◽  
C.J. Merchant
2018 ◽  
Vol 10 (12) ◽  
pp. 1916 ◽  
Author(s):  
Hye-Jin Woo ◽  
Kyung-Ae Park ◽  
Xiaofeng Li ◽  
Eun-Young Lee

Korea’s first geostationary satellite, the “Communication, Ocean, and Meteorological Satellite” (COMS), has been operating since 2010. The Meteorological Imager (MI), an sensor on-board the COMS, has observed sea-surface radiances for the estimation of sea surface temperature (SST) in the western Pacific Ocean and eastern Indian Ocean. To derive the SST coefficients of COMS, quality-controlled surface drifting buoy data were collected for the period of April 2011 to March 2015. A collocation procedure between COMS/MI data and the surface drifter data produced a matchup database for 4 years from 2011 to 2015. The coefficients for the COMS/MI SST were derived by applying appropriate algorithms, i.e., the Multi-channel SST (MCSST) and Non-linear SST (NLSST) algorithms, for daytime and nighttime data using a regression method. Validation results suggest the possibility of the continuous use of the coefficients as representative SST coefficients of COMS. The estimated SSTs near the edge of a full disk with high satellite zenith angles over 60° revealed relatively large errors compared to drifter temperatures. Most of NLSST formulations exhibited overestimation of SSTs at low SSTs (<10 °C). This study suggests an approach by which SST can be measured accurately in order to contribute to tracking climate change.


2016 ◽  
Vol 33 (11) ◽  
pp. 2415-2433 ◽  
Author(s):  
Werenfrid Wimmer ◽  
Ian S. Robinson

AbstractMeasurements of sea surface temperature at the skin interface () made by an Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) have been used for a number of years to validate satellite sea surface temperature (SST), especially high-accuracy observations such as made by the Advanced Along-Track Scanning Radiometer (AATSR). The ISAR instrument accuracy for measuring is ±0.1 K (Donlon et al.), but to satisfy Quality Assurance Framework for Earth Observation (QA4EO) principles and metrological standards (Joint Committee for Guides in Metrology), an uncertainty model is required. To develop the ISAR uncertainty model, all sources of uncertainty in the instrument are analyzed and an uncertainty value is assigned to each component. Finally, the individual uncertainty components are propagated through the ISAR retrieval algorithm to estimate a total uncertainty for each measurement. The resulting ISAR uncertainty model applied to a 12-yr archive of measurements from the Bay of Biscay shows that 77.6% of the data are expected to be within ±0.1 K and a further 17.2% are within 0.2 K.


Sign in / Sign up

Export Citation Format

Share Document