Three-dimensional fault geometry and kinematics of the 2008 M 7.1 Yutian earthquake revealed by very-high resolution satellite stereo imagery

2019 ◽  
Vol 232 ◽  
pp. 111300
Author(s):  
Xiaogang Song ◽  
Nana Han ◽  
Xinjian Shan ◽  
Chisheng Wang ◽  
Yingfeng Zhang ◽  
...  
1999 ◽  
Vol 75 (9) ◽  
pp. 269-274 ◽  
Author(s):  
Takuo MATSUMOTO ◽  
Takamasa NONAKA ◽  
Masayuki HASHIMOTO ◽  
Takeshi WATANABE ◽  
Yukio MITSUI

Author(s):  
R A D Mackenzie ◽  
G D W Smith ◽  
A Cerezo ◽  
T J Godfrey ◽  
J.E. Brown

The conventional atom probe field ion microscope permits very high resolution chemical information to be determined with a lateral spatial resolution of typically 2 nm. This spatial resolution is determined by the need to define the analysis area using an aperture. A recent development, the position sensitive atom probe (POSAP), has largely removed this limitation. In a conventional atom probe the ions passing through the aperture, which have come from a circular area of the order of 2 nm in diameter, travel along a long flight path where the mass to charge ratios are determined with high precision. In the position sensitive atom probe the aperture assembly, long flight tube and ion detector (a channel plate) are replaced with a position sensitive detector held at a known distance from the specimen surface. This detector consists of two parts, a channel plate component which permits the flight times (and hence mass to charge ratios) to be determined, and a wedge and strip anode which permits the position of the incoming ion to be calculated. This arrival position corresponds directly to the position on the specimen from which the ion came. The total field of view of the POSAP is a disc approximately 20 nm in diameter. With a conventional atom probe the data acquired during the evaporation sequence can be considered as a core extracted from the specimen, where the average composition as a function of depth is known. The position sensitive atom probe permits us to record data from a much wider core (20 nm rather than 2 nm in diameter), and also to retain the spatial information within the core. As the evaporation proceeds the two dimensional information yielded by the position sensitive detector builds up into a three dimensional block of data. We have, therefore, both chemical and spatial information in three dimensions at very high resolution from the sampled volume of material.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1251
Author(s):  
Chang-Uk Hyun ◽  
Joo-Hong Kim ◽  
Hyangsun Han ◽  
Hyun-cheol Kim

Observing sea ice by very high-resolution (VHR) images not only improves the quality of lower-resolution remote sensing products (e.g., sea ice concentration, distribution of melt ponds and pressure ridges, sea ice surface roughness, etc.) by providing details on the ground truth of sea ice, but also assists sea ice fieldwork. In this study, two fieldwork-based methods are proposed, one for the practical acquisition of VHR images over drifting Arctic sea ice using low-cost commercial off-the-shelf (COTS) sensors equipped on a helicopter, and the other for quantifying the compensating effect from continuously drifting sea ice that reduces geolocation uncertainty in the image mosaicking procedure. The drifting trajectory of the target ice was yielded from that recorded by an icebreaker that was tightly anchored to the floe and was then used to reversely compensate the locations of acquired VHR images. After applying the compensation, three-dimensional geolocation errors of the VHR images were decreased by 79.3% and 24.2% for two pre-defined image groups, respectively. The enhanced accuracy of the imaging locations was affected by imaging duration causing variable drifting distances of individual images. Further applicability of the mosaicked VHR image was discussed by comparing it with a TerraSAR-X synthetic aperture radar image containing the target ice, suggesting that the proposed methods can be used for precise comparison with satellite remote sensing products.


2017 ◽  
Vol 90 (5) ◽  
pp. 613-631 ◽  
Author(s):  
Fabian Ewald Fassnacht ◽  
Daniel Mangold ◽  
Jannika Schäfer ◽  
Markus Immitzer ◽  
Teja Kattenborn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document