Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models

2017 ◽  
Vol 77 ◽  
pp. 955-969 ◽  
Author(s):  
Amit Kumar Yadav ◽  
S.S. Chandel
2017 ◽  
Vol 44 (12) ◽  
pp. 994-1004 ◽  
Author(s):  
Ivica Androjić ◽  
Ivan Marović

The oscillation of asphalt mix composition on a daily basis significantly affects the achieved properties of the asphalt during production, thus resulting in conducting expensive laboratory tests to determine existing properties and predicting the future results. To decrease the amount of such tests, a development of artificial neural network and multiple linear regression models in the prediction process of predetermined dependent variables air void and soluble binder content is presented. The input data were obtained from a single laboratory and consists of testing 386 mixes of hot mix asphalt (HMA). It was found that it is possible and desirable to apply such models in the prediction process of the HMA properties. The final aim of the research was to compare results of the prediction models on an independent dataset and analyze them through the boundary conditions of technical regulations and the standard EN 13108-21.


2012 ◽  
Vol 27 (1) ◽  
pp. 240-250 ◽  
Author(s):  
Si Gao ◽  
Long S. Chiu

Abstract A statistical–dynamical model has been used for operational guidance for tropical cyclone (TC) intensity prediction. In this study, several multiple linear regression models and neural network (NN) models are developed for the intensity prediction of western North Pacific TCs at 24-, 48-, and 72-h intervals. The multiple linear regression models include a model of climatology and persistence (CLIPER), a model based on the Statistical Typhoon Intensity Prediction System (STIPS), which serves as the base regression model (BASE), and a model of STIPS with additional satellite estimates of surface evaporation (SLHF) and inner-core rain rate (IRR, STIPER model). A revised equation for the TC maximum potential intensity is derived using Tropical Rainfall Measuring Mission Microwave Imager optimally interpolated sea surface temperature data, which have higher temporal and spatial resolutions. Analyses of the resulting models show the marginal improvement of STIPER over BASE. However, IRR and SLHF are found to be significant predictors in the predictor pool. Neural network models using the same predictors as STIPER show reductions of the mean absolute errors of 7%, 11%, and 16% relative to STIPER for 24-, 48-, and 72-h forecasts, respectively. The largest improvement is found for the intensity forecasts of the rapidly intensifying and rapidly decaying TCs.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Charles Gbenga Williams ◽  
Oluwapelumi O. Ojuri

AbstractAs a result of heterogeneity nature of soils and variation in its hydraulic conductivity over several orders of magnitude for various soil types from fine-grained to coarse-grained soils, predictive methods to estimate hydraulic conductivity of soils from properties considered more easily obtainable have now been given an appropriate consideration. This study evaluates the performance of artificial neural network (ANN) being one of the popular computational intelligence techniques in predicting hydraulic conductivity of wide range of soil types and compared with the traditional multiple linear regression (MLR). ANN and MLR models were developed using six input variables. Results revealed that only three input variables were statistically significant in MLR model development. Performance evaluations of the developed models using determination coefficient and mean square error show that the prediction capability of ANN is far better than MLR. In addition, comparative study with available existing models shows that the developed ANN and MLR in this study performed relatively better.


Sign in / Sign up

Export Citation Format

Share Document