An efficient process for sustainable and scalable hydrogen production from green ammonia

2021 ◽  
Vol 152 ◽  
pp. 111562
Author(s):  
Junyoung Cha ◽  
Yongha Park ◽  
Boris Brigljević ◽  
Boreum Lee ◽  
Dongjun Lim ◽  
...  
Author(s):  
R. C. Ciocci ◽  
I. Abu-Mahfouz ◽  
S. S. E. H. Elnashaie

The United States economy’s dependence on fossil fuels has historical significance but lacks vision for a long-lasting fuel consumption policy. Political complications, economic instabilities, supply shortages, and continued pollution contributions pose significant obstacles to continued reliance on oil. Alternative technologies based on renewable resources offer much more promise for a sustainable approach to meeting global energy needs. Recent research and applications have established hydrogen as a viable clean fuel source. Those applications, including fuel cells, have shown promise for the eventual migration from a fossil-fuel economy to one based on renewable energy sources. Air pollution, specifically contributions to greenhouse gases, is a major environmental hazard due to the use of fossil fuel-related hydrocarbons for fuel and industrial applications. An alternative, hydrogen, offers significant advantages as an ultra-clean fuel of the future when it is burned directly or processed through fuel cells. Currently, the main process for hydrogen production is catalytic steam reforming of natural gas. This process is relatively inefficient and does not allow the use of a wide range of feedstock materials including renewable sources. The objective of impending research is to develop this new, ultra-clean and efficient process, which converts a wide range of hydrocarbons, including renewable bio-oils, into pure hydrogen suitable for fuel cells and which also converts CO2 emission into syngas. The main impact is clearly on air pollution and global warming through the minimization of greenhouse gas emission and the economical production of pure hydrogen to foster the hydrogen economy. This new process will achieve considerable increase in hydrogen productivity and considerable decrease in the energy consumed to produce it. The technology will center on a circulating fluidized bed (CFB) that will separate hydrogen from bio-oils in an efficient process that greatly reduces polluting hydrocarbons compared to traditional fossil fuel processing. Early studies will include the mathematical modeling of computational fluid dynamics to identify process parameters. Eventually, a pilot plant will be used to verify/modify the mathematical model, for a wide range of conditions and renewable feedstocks. Testing the pilot plant will lead to the development of reliable design equations suitable for replication, build, and tight control of this novel process.


2020 ◽  
pp. 124-135
Author(s):  
I. N. G. Wardana ◽  
N. Willy Satrio

Tofu is main food in Indonesia and its waste generally pollutes the waters. This study aims to change the waste into energy by utilizing the electric charge in the pores of tofu waste to produce hydrogen in water. The tofu pore is negatively charged and the surface surrounding the pore has a positive charge. The positive and negative electric charges stretch water molecules that have a partial charge. With the addition of a 12V electrical energy during electrolysis, water breaks down into hydrogen. The test was conducted on pre-treated tofu waste suspension using oxalic acid. The hydrogen concentration was measured by a MQ-8 hydrogen sensor. The result shows that the addition of turmeric together with sodium bicarbonate to tofu waste in water, hydrogen production increased more than four times. This is due to the fact that magnetic field generated by delocalized electron in aromatic ring in turmeric energizes all electrons in the pores of tofu waste, in the sodium bicarbonate, and in water that boosts hydrogen production. At the same time the stronger partial charge in natrium bicarbonate shields the hydrogen proton from strong attraction of tofu pores. These two combined effect are very powerful for larger hydrogen production in water by tofu waste.


Author(s):  
A. Iulianelli ◽  
◽  
G. Bagnato ◽  
A. Iulianelli ◽  
A. Vita Vita ◽  
...  

2016 ◽  
Vol 12 (4) ◽  
pp. 5-10
Author(s):  
L.F. Kozin ◽  
◽  
S.V. Volkov ◽  
A.V. Sviatogor ◽  
B.I. Daniltsev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document