SDS modulates amyloid fibril formation and conformational change in succinyl-ConA at low pH

Author(s):  
Javed Masood Khan ◽  
Ajamaluddin Malik ◽  
Mohammad Z Ahmed ◽  
Anwar Ahmed
2011 ◽  
Vol 64 (1) ◽  
pp. 36 ◽  
Author(s):  
Yanqin Liu ◽  
Lam H. Ho ◽  
John. A. Carver ◽  
Tara L. Pukala

Ion mobility-mass spectrometry (IM-MS) is emerging as an important biophysical technique for the structural analysis of proteins and their assemblies, in particular for structurally heterogeneous systems such as those on the protein misfolding and aggregation pathway. Using IM-MS we have monitored amyloid fibril formation of A53T α-synuclein, a mutant synuclein protein associated with Parkinson’s disease, and identified that a conformational change towards a more compact structure occurs during the initial stages of aggregation. Binding of A53T α-synuclein to a flavenoid based amyloid fibril inhibitor, (–)-epigallocatechin-3-gallate, has been observed with a 1:1 stoichiometry. By analysis of ion collision cross-sections, we show epigallocatechin gallate binding prevents protein conformational change, and in turn decreases the formation of fibrillar aggregates.


2014 ◽  
Vol 70 ◽  
pp. 214-221 ◽  
Author(s):  
Jarosław Wawer ◽  
Joanna Krakowiak ◽  
Michał Szociński ◽  
Zofia Lustig ◽  
Marcin Olszewski ◽  
...  

2021 ◽  
Author(s):  
Katarina Siposova ◽  
Dagmar Sedlakova ◽  
Andrey Musatov

Monitoring of aggregation of amyloid-prone proteins is critical for understanding of the mechanism of amyloid fibril formation. Insulin, when dissolved in low pH buffer has a surface tension of 61-64...


Author(s):  
T. Shirahama ◽  
M. Skinner ◽  
A.S. Cohen

A1thought the mechanisms of amyloidogenesis have not been entirely clarified, proteolysis of the parent proteins may be one of the important steps in the amyloid fibril formation. Recently, we reported that "dense fibrillar inclusions" (DFI), which had the characteristics of lysosomes and contained organized fibrillar profiles as well, were observed in the reticuloendothelial cells in close association with the foci of new amyloid deposits. We considered the findings as evidence for the involvement of lysosomal system in amyloid fibril formation (l). In the present study, we attempted to determine the identity of the contents of the DFI by the use of antisera against the amyloid protein (AA) and an immuno-electron microscopic technique.Amyloidosis was induced in CBA/J mice by daily injections of casein (l). AA was isolated from amyloid-laden spleens by gel filtration and antibody to it was produced in rabbits (2). For immunocytochemistry, the unlabeled antibody enzyme method (3) was employed.


FEBS Journal ◽  
2007 ◽  
Vol 274 (24) ◽  
pp. 6290-6304 ◽  
Author(s):  
Agata Rekas ◽  
Lucy Jankova ◽  
David C. Thorn ◽  
Roberto Cappai ◽  
John A. Carver

Sign in / Sign up

Export Citation Format

Share Document