Detecting the content of the bright blue pigment in cream based on deep learning and near-infrared spectroscopy

Author(s):  
Jun Liu ◽  
Jianxing Zhang ◽  
Zhenglin Tan ◽  
Qin Hou ◽  
Ruirui Liu
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Zhe Xu ◽  
Xiaomin Zhao ◽  
Xi Guo ◽  
Jiaxin Guo

Deep learning is characterized by its strong ability of data feature extraction. This method can provide unique advantages when applying it to visible and near-infrared spectroscopy for predicting soil organic matter (SOM) content in those cases where the SOM content is negatively correlated with the spectral reflectance of soil. This study relied on the SOM content data of 248 red soil samples and their spectral reflectance data of 400–2450 nm in Fengxin County, Jiangxi Province (China) to meet three objectives. First, a multilayer perceptron and two convolutional neural networks (LeNet5 and DenseNet10) were used to predict the SOM content based on spectral variation and variable selection, and the outcomes were compared with that from the traditional back-propagation neural network (BPN). Second, the four methods were applied to full-spectrum modeling to test the difference to selected feature variables. Finally, the potential of direct modeling was evaluated using spectral reflectance data without any spectral variation. The results of prediction accuracy showed that deep learning performed better at predicting the SOM content than did the traditional BPN. Based on full-spectrum data, deep learning was able to obtain more feature information, thus achieving better and more stable results (i.e., similar average accuracy and far lower standard deviation) than those obtained through variable selection. DenseNet achieved the best prediction result, with a coefficient of determination (R2) = 0.892 ± 0.004 and a ratio of performance to deviation (RPD) = 3.053 ± 0.056 in validation. Based on DenseNet, the application of spectral reflectance data (without spectral variation) produced robust results for application-level purposes (validation R2 = 0.853 ± 0.007 and validation RPD = 2.639 ± 0.056). In conclusion, deep learning provides an effective approach to predict the SOM content by visible and near-infrared spectroscopy and DenseNet is a promising method for reducing the amount of data preprocessing.


2019 ◽  
Vol 90 (9-10) ◽  
pp. 1057-1066 ◽  
Author(s):  
Zhengdong Liu ◽  
Wenxia Li ◽  
Zihan Wei

The recycling of waste textiles has become a growth point for the sustainable development of the textile and clothing industry. In addition, sorting is a key link in the follow-up recycling process. Since different fabrics are required to be processed by different technologies, manual sorting not only takes time and effort but also cannot achieve accurate and reliable classification. Based on the analysis of near infrared spectroscopy, the theory and methods of deep learning are used for the qualitative classification of waste textiles in order to complete the automatic fabric composition recognition in the sorting process. Firstly, a standard sample set is established by waveform clipping and normalization, and a Textile Recycling Net deep web suitable for near infrared spectroscopy is established. Then, a pixilated layer is used to facilitate the deep learning of features, and the multidimensional features of the spectrum are extracted by using the multi-layer convolutional and pooling layers. Finally, the softmax classifier is adopted to complete the qualitative classification. Experimental results show that the convolutional network classification method using normalized and pixelated near infrared spectroscopy can realize the automatic classification of several common textiles, such as cotton and polyester, and effectively improve the detection level and speed of fabric components.


2020 ◽  
Vol 9 (11) ◽  
pp. 3475
Author(s):  
Shinya Takagi ◽  
Shigemitsu Sakuma ◽  
Ichizo Morita ◽  
Eri Sugimoto ◽  
Yoshihiro Yamaguchi ◽  
...  

In fields using functional near-infrared spectroscopy (fNIRS), there is a need for an easy-to-understand method that allows visual presentation and rapid analysis of data and test results. This preliminary study examined whether deep learning (DL) could be applied to the analysis of fNIRS-derived brain activity data. To create a visual presentation of the data, an imaging program was developed for the analysis of hemoglobin (Hb) data from the prefrontal cortex in healthy volunteers, obtained by fNIRS before and after tooth clenching. Three types of imaging data were prepared: oxygenated hemoglobin (oxy-Hb) data, deoxygenated hemoglobin (deoxy-Hb) data, and mixed data (using both oxy-Hb and deoxy-Hb data). To differentiate between rest and tooth clenching, a cross-validation test using the image data for DL and a convolutional neural network was performed. The network identification rate using Hb imaging data was relatively high (80‒90%). These results demonstrated that a method using DL for the assessment of fNIRS imaging data may provide a useful analysis system.


Sign in / Sign up

Export Citation Format

Share Document