scholarly journals Real-time multi-channel Fourier transform spectroscopy and its application to non-invasive blood fat measurement

2016 ◽  
Vol 8 ◽  
pp. 55-58 ◽  
Author(s):  
Hiromitsu Furukawa
1976 ◽  
Vol 16 (3) ◽  
pp. 345-348 ◽  
Author(s):  
Ph. Marteau ◽  
J. Obriot ◽  
C. Chalier ◽  
G.H. Arie

2021 ◽  
Vol 128 (1) ◽  
Author(s):  
Mohsen Ghiasi Tarzi ◽  
Fereshteh Rahimi ◽  
Ali Abouei Mehrizi ◽  
Moloud Jalili Shahmansouri ◽  
Bahman Ebrahimi Hoseinzadeh

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Thierry Ford ◽  
Adriana Rizzo ◽  
Ella Hendriks ◽  
Tine Frøysaker ◽  
Francesco Caruso

Abstract The availability and popularity of portable non-invasive instrumentation for the study of paintings has increased due to a shift away from using micro-invasive techniques. Fourier transform infrared spectroscopy (FTIR) is a successful and established technique for the characterisation of organic materials in varnish coatings and paint films. In addition, portable FTIR (pFTIR) spectrometers allow for non-invasive in situ analyses. This overcomes the disadvantages associated with micro-sampling and reproducibility issues encountered in analysis at a specific spot, as pFTIR enables examination of the whole painting. However, the practical applications and capabilities of pFTIR as a suitable screening method for the chemical characterization of varnish coatings in painting collections require systematic evaluation. This study involves a selection of three paintings from the collection of 57 works by Edvard Munch belonging to The National Museum of Art in Norway. Its focus is the identification of the non-original varnish types that were applied by the museum. Between 1909 and 1993, the Museum was embroiled in a varnish controversy due to their application of, first natural and then synthetic, varnish coatings to 48 of these Munch paintings. A series of public debates arose about the Museum’s varnishing practice, which ran counter to the artist’s usual custom of leaving paint surfaces unvarnished (or occasional locally varnished). The three paintings were screened using a pFTIR spectrometer. Different regions of the varnished and unvarnished painted surfaces were analysed with Portable Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). These paintings date from 1887 to 1891 and are documented as having been treated at the Museum with one of the following types of natural or low-molecular-weight synthetic varnish coatings: dammar, mastic, polycyclohexanone (Laropal K 80 from BASF) and reduced or hydrogenated cyclohexanone-co-methyl-cyclohexanone (MS2A from Howards of Ilford). Surface microscopy and multispectral imaging of the varnished surfaces initially assisted the mapping and choice of areas relevant for the portable DRIFTS measurements. Portable X-Ray fluorescence and surface gloss readings were also made at the pFTIR spot locations to complement the results. Using known dry varnish samples, pFTIR reference spectra were obtained and a DRIFT spectral library was also created from known historic batches of varnishes used by the museum. These were then compared with the in situ pFTIR surface readings taken from the paintings together with additional spectra acquired from a selected number of micro-samples from the same spot locations. The preliminary measurements provided an insight into the capabilities, limitations and practical aspects of using portable DRIFTS for the identification of varnish coatings present in this specific selection of Munch paintings.


2014 ◽  
Author(s):  
Rozaimi Ghazali ◽  
◽  
Asiah Mohd Pilus ◽  
Wan Mohd Bukhari Wan Daud ◽  
Mohd Juzaila Abd Latif ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document