Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage

2016 ◽  
Vol 571 ◽  
pp. 699-710 ◽  
Author(s):  
Alsu Kuznetsova ◽  
Petr Kuznetsov ◽  
Julia M. Foght ◽  
Tariq Siddique
2016 ◽  
Vol 62 (10) ◽  
pp. 870-879 ◽  
Author(s):  
Courtney Dean ◽  
Yeyuan Xiao ◽  
Deborah J. Roberts

Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.


2015 ◽  
Vol 505 ◽  
pp. 1-10 ◽  
Author(s):  
Petr Kuznetsov ◽  
Alsu Kuznetsova ◽  
Julia M. Foght ◽  
Tariq Siddique

2021 ◽  
Vol 9 (12) ◽  
pp. 2529
Author(s):  
Sebastian Stasik ◽  
Juliane Schmidt ◽  
Katrin Wendt-Potthoff

The biogenic production of toxic H2S gas in sulfate-rich oil sands tailings ponds is associated with strong environmental concerns. Beside precipitation into sulfide minerals and chemical re-oxidation, microbial sulfur oxidation may catalyze sulfide re-cycling but potentially contributes to acid rock drainage (ARD) generation. To evaluate the microbial potential for sulfur oxidation, we conducted a microcosm-based pilot study with tailings of an active pond. Incubations were performed under oxic and anoxic conditions, with and without KNO3 as an electron acceptor and thiosulfate as a common substrate for microbial sulfur oxidation. The highest potentials of sulfur oxidation occurred in oxic assays (1.21 mmol L−1 day−1). Under anoxic conditions, rates were significantly lower and dominated by chemical transformation (0.09 mmol L−1 day−1; p < 0.0001). The addition of KNO3 to anoxic incubations increased microbial thiosulfate oxidation 2.5-fold (0.23 mmol L−1 day−1; p = 0.0474), with complete transformation to SO42− coupled to NO3− consumption, pointing to the activity of sulfur-oxidizing bacteria (SOB) under nitrate-reducing conditions. Importantly, in the presence of KNO3, a decrease in sedimentary sulfides was associated with an increase in S0, which indicates the potential for microbially mediated oxidation of sulfide minerals and ARD generation. Furthermore, the comparative analysis of sediments from other anthropogenic aquatic habitats demonstrated high similarities with respect to viable SOB counts and corresponding activity rates.


2017 ◽  
Vol 16 (9) ◽  
pp. 2089-2096
Author(s):  
Artwell Kanda ◽  
George Nyamadzawo ◽  
Jephita Gotosa ◽  
Nathan Nyamutora ◽  
Willis Gwenzi

2021 ◽  
pp. geochem2021-066
Author(s):  
S.J. Day

Blending of potentially acid generating (PAG) waste rock with non-PAG waste rock to create a rock mixture which performs as non-PAG is a possible approach to permanent prevention of acid rock drainage (ARD) for PAG waste rock. In 2012, a field weathering study using 300 kg samples was implemented at Teck Coal's Quintette Project located in northeastern British Columbia, Canada to test the prevention of acid generation in the PAG waste rock by dissolved carbonate leached from overlying non-PAG waste rock and direct neutralization of acidic water from PAG waste rock by contact with non-PAG waste rock.After eight years of monitoring the experiments, the layered non-PAG on PAG barrels provided proof-of-concept that as the thickness of the PAG layer increases relative to the thickness of the non-PAG layers, acidic waters are more likely to be produced. The PAG on non-PAG layering has resulted in non-acidic water and no indications of metal leaching despite accelerated oxidation in the PAG layer shown by sulphate loadings. The study has demonstrated that the scale of heterogeneity of PAG and non-PAG materials is a critical consideration for providing certainty that rock blends designed to be non-PAG will perform as non-PAG in perpetuity. This is contrary to the standard paradigm in which an excess of acid-consuming minerals is often considered sufficient alone to ensure ARD is not produced.


2017 ◽  
Vol 51 (19) ◽  
pp. 11317-11325 ◽  
Author(s):  
Rong Fan ◽  
Michael D. Short ◽  
Sheng-Jia Zeng ◽  
Gujie Qian ◽  
Jun Li ◽  
...  
Keyword(s):  

Author(s):  
Rudy Sayoga Gautama ◽  
Ginting Jalu Kusuma ◽  
Dyah Firgiani ◽  
Salmawati Mustakar ◽  
Prasetyaningtyas Ekarini

Sign in / Sign up

Export Citation Format

Share Document