acid rock
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 73)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Vol 9 (12) ◽  
pp. 2529
Author(s):  
Sebastian Stasik ◽  
Juliane Schmidt ◽  
Katrin Wendt-Potthoff

The biogenic production of toxic H2S gas in sulfate-rich oil sands tailings ponds is associated with strong environmental concerns. Beside precipitation into sulfide minerals and chemical re-oxidation, microbial sulfur oxidation may catalyze sulfide re-cycling but potentially contributes to acid rock drainage (ARD) generation. To evaluate the microbial potential for sulfur oxidation, we conducted a microcosm-based pilot study with tailings of an active pond. Incubations were performed under oxic and anoxic conditions, with and without KNO3 as an electron acceptor and thiosulfate as a common substrate for microbial sulfur oxidation. The highest potentials of sulfur oxidation occurred in oxic assays (1.21 mmol L−1 day−1). Under anoxic conditions, rates were significantly lower and dominated by chemical transformation (0.09 mmol L−1 day−1; p < 0.0001). The addition of KNO3 to anoxic incubations increased microbial thiosulfate oxidation 2.5-fold (0.23 mmol L−1 day−1; p = 0.0474), with complete transformation to SO42− coupled to NO3− consumption, pointing to the activity of sulfur-oxidizing bacteria (SOB) under nitrate-reducing conditions. Importantly, in the presence of KNO3, a decrease in sedimentary sulfides was associated with an increase in S0, which indicates the potential for microbially mediated oxidation of sulfide minerals and ARD generation. Furthermore, the comparative analysis of sediments from other anthropogenic aquatic habitats demonstrated high similarities with respect to viable SOB counts and corresponding activity rates.


2021 ◽  
pp. geochem2021-066
Author(s):  
S.J. Day

Blending of potentially acid generating (PAG) waste rock with non-PAG waste rock to create a rock mixture which performs as non-PAG is a possible approach to permanent prevention of acid rock drainage (ARD) for PAG waste rock. In 2012, a field weathering study using 300 kg samples was implemented at Teck Coal's Quintette Project located in northeastern British Columbia, Canada to test the prevention of acid generation in the PAG waste rock by dissolved carbonate leached from overlying non-PAG waste rock and direct neutralization of acidic water from PAG waste rock by contact with non-PAG waste rock.After eight years of monitoring the experiments, the layered non-PAG on PAG barrels provided proof-of-concept that as the thickness of the PAG layer increases relative to the thickness of the non-PAG layers, acidic waters are more likely to be produced. The PAG on non-PAG layering has resulted in non-acidic water and no indications of metal leaching despite accelerated oxidation in the PAG layer shown by sulphate loadings. The study has demonstrated that the scale of heterogeneity of PAG and non-PAG materials is a critical consideration for providing certainty that rock blends designed to be non-PAG will perform as non-PAG in perpetuity. This is contrary to the standard paradigm in which an excess of acid-consuming minerals is often considered sufficient alone to ensure ARD is not produced.


2021 ◽  
Author(s):  
Jiahui You ◽  
Kyung Jae Lee

Abstract CO2 storage and sequestration are regarded as an effective approach to mitigate greenhouse gas emissions. While injecting an enormous amount of CO2 into carbonate–rich aquifers, CO2 dissolves in the formation brine under the large pressure, and the subsequently formed CO2–enriched brine reacts with the calcite. Reaction–induced changes in pore structure and fracture geometry alter the porosity and permeability, giving rise to concerns of CO2storage capacity and security. Especially in the reservoir or aquifer with natural fractures, the fractures provide a highly permeable pathways for fluid flow. This study aims to analyze the acid–rock interaction and subsequent permeability evolution in the systems with complex fracture configurations during CO2 injection by implementing a pore–scale DBS reactive transport model. The model has been developed by expanding the functionality of OpenFOAM, which is an open–source code for computational fluid dynamics. A series of partial differential equations are discretized by applying the Finite Volume Method (FVM) and sequentially solved. Different fracture configurations in terms of fracture length, density, connection, and mineral components have been considered to investigate their impacts on the dynamic porosity–permeability relationship, dissolution rate, and reactant transport characteristics during CO2 storage. The investigation revealed several interesting findings. We found that calcium (Ca) concentration was low in the poorly connected area at the initial time. As CO2–enriched brine saturated the system and reacted with calcite, Ca started being accumulated in the system. However, Ca barely flowed out of the poor–connected area, and the concentration became high. Lengths of branches mainly influenced the dissolution rates, while they had slight impacts on the porosity–permeability relationship. While fracture connectivity had an apparent influence on the porosity–permeability relationship, it showed a weak relevance on the dissolution rate. These microscopic insights can help enhance the CO2 sealing capacity and guarantee environmental security.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 455
Author(s):  
Ailiang Gu ◽  
Christopher John Eastoe

Cenozoic evaporites (gypsum and anhydrite) in southwestern North America have wide ranges of δ34S (−30 to +22‰; most +4 to +10‰) and δ18OSO4 (+3 to +19‰). New data are presented for five basins in southern Arizona. The evaporites were deposited in playas or perennial saline lakes in closed basins of Oligocene or younger age. Very large accumulations in Picacho, Safford and Tucson Basins have isotope compositions plotting close to a linear δ34S-δ18OSO4 relationship corresponding to mixing of two sources of sulfur: (1) sulfate recycled from Permian marine gypsum and (2) sulfate from weathering of Laramide-age igneous rocks that include porphyry copper deposits. In the large evaporites, sulfate with δ34S > +10‰ is dominantly of Permian or Early Cretaceous marine origin, but has locally evolved to higher values as a result of bacterial sulfate reduction (BSR). Sulfate with δ34S < −10‰ formed following exposure of sulfides, possibly formed during supergene enrichment of a porphyry copper deposit by BSR, and have values of δ18OSO4 higher than those of local acid rock drainage because of participation of evaporated water in BSR. Accumulations of 30 to 100 km3 of gypsum in Picacho and Safford Basins are too large to explain as products of contemporaneous erosion of Permian and Laramide source materials, but may represent recycling of Late Cretaceous to Miocene lacustrine sulfate.


2021 ◽  
Vol 251 ◽  
pp. 678-687
Author(s):  
Mars Khasanov ◽  
Andrey Maltcev

Acid treatment of wells program is directly related to oil production efficiency. Investigations aimed at improving the efficiency of acid treatment in a terrigenous reservoir have mainly reviewed the changing and adapting the reagents to minimize bridging caused by acid-rock interaction. Under real conditions, application of new and unique acid compositions is a complex process from an organizational point of view and is therefore not widely used as compared with conventional compositions based on a mixture of hydrochloric and hydrofluoric acids. The paper is based on an approach to improve acid treatment efficiency through optimal design based on near-bottomhole zone treatment simulation. The aspects for practical application of the developed acid treatment simulator for terrigenous reservoirs based on a numerical model of hydrodynamic, physical and chemical processes in a porous medium on an unstructured PEBI-grid are described. The basic uncertainties of the model are identified and analyzed. Influence of empirical parameters within the system of equations on the calculation results and modeling of the mineralogical composition of rocks are considered. Algorithm for static modelling of near-bottomhole zone for acid treatment modelling is described, as well as an approach to optimizing the design of near-bottomhole zone treatment based on adapting the results of rock tests in the model. Using experimental data, the necessity of accounting for influence of secondary and tertiary reactions on the results of modeling physical and chemical processes during acid treatment of terrigenous reservoirs was proved. The distinctive features of West Siberian objects (polymictic reservoirs) with respect to the efficiency of near-bottomhole zone treatment with clay acid have been investigated. Series of calculations to determine the optimum volume of acid injection has been carried out. Experience of previously conducted measures under the considered conditions has been analyzed and recommendations to improve the efficiency of acid treatment have been given.


2021 ◽  
Author(s):  
Ruslan Kalabayev ◽  
Ekaterina Sukhova ◽  
Gadam Rovshenov ◽  
Roman Kontarev

Abstract Successful sandstone matrix stimulation treatments require addressing complex mineralogy, correctly identifying formation damage, selecting the best stimulation fluids, and placing these fluids correctly. The objective of this paper is to demonstrate a workflow considering laboratory testing, advanced software modeling including acid and diverter fluid efficiency calibration using field experimental data, field execution, and relevant case studies in two oil fields located in the Cheleken block, offshore Caspian Sea. Implementation of the workflow has led to positive results. Matrix acidizing was selected as the primary method for restoring production of the oil wells drilled into sandstone reservoirs due to the reservoir characteristics. Deep Zhdanov wells and shallower Lam wells possess ~15 and ~250 md permeability and ~90 and ~50°C static reservoir temperature, respectively. The target rock mineralogy in both fields predominantly consists of quartz, chlorite, and carbonate minerals. Fluids selection, stimulation design and job execution followed the above mentioned workflow. Treatment modeling considered calibration factors derived from field testing and incorporated several acid and diverter systems. A mix of bullhead and coiled tubing placed treatments were employed. The first step of the workflow considered characterization of the rock mineralogy and selection of the best-fit treatment fluids. Rock dissolution and X-ray diffraction (XRD) tests were run to develop the optimum formulations for the treatment conditions. Further, the results of the laboratory testing were incorporated into the advanced matrix acidizing simulator to model and optimize the treatment schedules. The recently developed matrix stimulation software incorporates geochemical, thermal, and placement simulations calibrated with experimental data. Offset well stimulation treatment pressure match was done by calibrating the acid and diverter fluid efficiency, and those calibrated values were considered for design simulations for the following acid treatments. In this paper, the term "acid efficiency" is defined as a measure of the relative rate at which the acid can penetrate when it flows in the rock matrix as a function of matrix porosity and the overall acid reactivity. The term "diverter efficiency" is defined as a measure of the viscosity developed by a given diverter when it flows in the rock matrix. Such a calibration method accounts for the actual reservoir large-scale acid-rock reaction kinetics. Finally, diagnostic tests and main acid treatments were executed that enabled achieving the desired levels of skin reduction, reservoir placement, zone coverage, and hydrocarbon production rates. Several acid stimulation operations were conducted including three cases in which a low-temperature well with carbonate damage needed repeated acidizing and two additional cases that involved wells with deep, hot, and clay-rich pay zones. Several fluid schedules were applied including foam diversion technique. The above approach uses a unique method of acid efficiency calibration using field experimental data. It requires good knowledge of reservoir rock mineralogy, porosity, and permeability profiles in the zones of interest. Pretreatment skin is calibrated using production data prior to acid efficiency calibration based on matching the actual treatment pressures. The pressure behavior observed during the following treatments closely matched the design pressures confirming applicability of the approach.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2861
Author(s):  
Christopher John Allman ◽  
David Gómez-Ortiz ◽  
Andrea Burke ◽  
Ricardo Amils ◽  
Nuria Rodriguez ◽  
...  

Peña de Hierro, located in southwest Spain, encompasses the springs and headwaters for the Rio Tinto River that emerge above normal faults and has been mined for its rich sulfide ore since 2500 BC. The springs are typically characterized by an orange coloration, typical pH of ~2.33, and contain elevated concentrations of heavy metals that are produced by acid rock drainage (ARD). ARD is a natural phenomenon that results from chemolithoautotrophs metabolizing the sulfide ore. Mining has amplified the magnitude of the acidity and concentrations of heavy metals evidenced within sedimentary cores from the Huelva estuary. Acidity, redox state, hydrochemistry and isotopic analyses were examined for the purpose of characterizing the subsurface flows and determining the interconnectivity of the groundwaters. Previous studies have documented the geochemistry of the springs, dating a select few, yet many springs remain uncharacterized. Acidity presented spatial variability throughout the field area, caused by extensive sulfide interactions which generated and modified the pH. Redox exhibited a large range of values due to oxygen diffusivity though the fracture network. The surrounding geology is highly heterogeneous because of intensive deformation during the Variscan and Tertiary periods, and this heterogeneity is shown in the varied aqueous chemistry. Fractionation patterns observed in δ2H and δ18O values predominantly reflected enrichment by intensive evaporation and depletion in δ18O as a result of the proposed sulfatic-water model for Rio Tinto’s hydrogeology. The analysis illustrates minimal hydrologic interconnectivity, evidenced by the extensive physical and chemical contrasts within such a small proximity.


2021 ◽  
pp. geochem2021-068
Author(s):  
C. H. Gammons ◽  
M. F. Doolittle ◽  
K. A. Eastman ◽  
S. R. Poulson

This paper investigates natural acid rock drainage in two streams draining either side of Mount Evans, Montana. Bedrock consists of pyrrhotite-bearing schist intruded by granitic dikes and plutons of late Cretaceous to Tertiary age. The headwaters of both streams are moderately acidic (pH < 5.0) and carry elevated loads of dissolved sulfate, aluminum, and other trace metals (Cd, Co, Cu, Mn, Zn) as well as rare earth elements (REE). Copious aluminum precipitates inferred to be hydrobasaluminite coat boulders of both streams as pH rises > 5, with adsorption of copper and REE. Concentrations and loads of dissolved sulfate and trace elements are anomalously high in a small tributary that is sourced by meltwater from a rock glacier. The S-isotope composition of dissolved sulfate in both watersheds is similar to that of pyrrhotite in the meta-sediments, but not molybdenite in late porphyry dikes. Calculations of sulfate flux (i.e., sulfate load divided by surface area) indicate a relatively fast rate of sulfide oxidation in the study area, possibly due to exposure of fresh bedrock in the steep and recently glaciated field area. Overall, the geochemistry of the site suggests the possible presence of a metamorphosed sedimentary-exhalative (SEDEX) deposit, a possibility that is unlikely to be tested by drilling given the proximity of the site to a federal wilderness area. Thematic collection: This article is part of the Hydrochemistry related to exploration and environmental issues collection available at: https://www.lyellcollection.org/cc/hydrochemistry-related-to-exploration-and-environmental-issuesSupplementary material:https://doi.org/10.6084/m9.figshare.c.5649850


Sign in / Sign up

Export Citation Format

Share Document