Herbivory induced non-local responses of the clonal invader Carpobrotus edulis are not mediated by clonal integration

2018 ◽  
Vol 633 ◽  
pp. 1041-1050 ◽  
Author(s):  
Jonatan Rodríguez ◽  
Mariasole Calbi ◽  
Sergio R. Roiloa ◽  
Luís González
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
James R. Capers ◽  
Stephen J. Boyes ◽  
Alastair P. Hibbins ◽  
Simon A. R. Horsley

AbstractThe ability to design the electromagnetic properties of materials to achieve any given wave scattering effect is key to many technologies, from communications to cloaking and biological imaging. Currently, common design methods either neglect degrees of freedom or are difficult to interpret. Here, we derive a simple and efficient method for designing wave–shaping materials composed of dipole scatterers, taking into account multiple scattering effects and both magnetic and electric polarizabilities. As an application of our theory, we design aperiodic metasurfaces that re-structure the radiation from a dipole emitter: (i) modifying of the near-field to provide a 4-fold enhancement in power emission; (ii) re-shaping the far-field radiation pattern to exhibit chosen directivity; and (iii) the design of a discrete Luneburg–like lens. Additionally, we develop a clear physical interpretation of the optimised structure, by extracting eigen-polarizabilities of the system, finding that a large eigen-polarizability corresponds to a large collective response of the scatterers.


Author(s):  
Zhifeng Shao

Recently, low voltage (≤5kV) scanning electron microscopes have become popular because of their unprecedented advantages, such as minimized charging effects and smaller specimen damage, etc. Perhaps the most important advantage of LVSEM is that they may be able to provide ultrahigh resolution since the interaction volume decreases when electron energy is reduced. It is obvious that no matter how low the operating voltage is, the resolution is always poorer than the probe radius. To achieve 10Å resolution at 5kV (including non-local effects), we would require a probe radius of 5∽6 Å. At low voltages, we can no longer ignore the effects of chromatic aberration because of the increased ratio δV/V. The 3rd order spherical aberration is another major limiting factor. The optimized aperture should be calculated as


Author(s):  
Zhifeng Shao ◽  
A.V. Crewe

For scanning electron microscopes, it is plausible that by lowering the primary electron energy, one can decrease the volume of interaction and improve resolution. As shown by Crewe /1/, at V0 =5kV a 10Å resolution (including non-local effects) is possible. To achieve this, we would need a probe size about 5Å. However, at low voltages, the chromatic aberration becomes the major concern even for field emission sources. In this case, δV/V = 0.1 V/5kV = 2x10-5. As a rough estimate, it has been shown that /2/ the chromatic aberration δC should be less than ⅓ of δ0 the probe size determined by diffraction and spherical aberration in order to neglect its effect. But this did not take into account the distribution of electron energy. We will show that by using a wave optical treatment, the tolerance on the chromatic aberration is much larger than we expected.


1998 ◽  
Vol 08 (PR8) ◽  
pp. Pr8-309-Pr8-316 ◽  
Author(s):  
Y. Z. Povstenko
Keyword(s):  

1987 ◽  
Vol 48 (4) ◽  
pp. 547-552 ◽  
Author(s):  
B. Caroli ◽  
C. Caroli ◽  
C. Misbah ◽  
B. Roulet

Sign in / Sign up

Export Citation Format

Share Document