Molecular characteristics of sedimentary organic matter in controlling mercury (Hg) and elemental mercury (Hg0) distribution in tropical estuarine sediments

2019 ◽  
Vol 668 ◽  
pp. 592-601 ◽  
Author(s):  
Prasad P. Padalkar ◽  
Parthasarathi Chakraborty ◽  
Kartheek Chennuri ◽  
Saranya Jayachandran ◽  
Lamjahao Sitlhou ◽  
...  
2013 ◽  
Vol 10 (11) ◽  
pp. 7609-7622 ◽  
Author(s):  
M. Alkhatib ◽  
P. A. del Giorgio ◽  
Y. Gelinas ◽  
M. F. Lehmann

Abstract. The distribution of dissolved organic nitrogen (DON) and carbon (DOC) in sediment porewaters was determined at nine locations along the St. Lawrence estuary and in the gulf of St. Lawrence. In a previous manuscript (Alkhatib et al., 2012a), we have shown that this study area is characterized by gradients in the sedimentary particulate organic matter (POM) reactivity, bottom water oxygen concentrations, and benthic respiration rates. Based on the porewater profiles, we estimated the benthic diffusive fluxes of DON and DOC in the same area. Our results show that DON fluxed out of the sediments at significant rates (110 to 430 μmol m−2 d−1). DON fluxes were positively correlated with sedimentary POM reactivity and varied inversely with sediment oxygen exposure time (OET), suggesting direct links between POM quality, aerobic remineralization and the release of DON to the water column. DON fluxes were on the order of 30 to 64% of the total benthic inorganic fixed N loss due to denitrification, and often exceeded the diffusive nitrate fluxes into the sediments. Hence they represented a large fraction of the total benthic N exchange, a result that is particularly important in light of the fact that DON fluxes are usually not accounted for in estuarine and coastal zone nutrient budgets. In contrast to DON, DOC fluxes out of the sediments did not show any significant spatial variation along the Laurentian Channel (LC) between the estuary and the gulf (2100 ± 100 μmol m−2 d−1). The molar C / N ratio of dissolved organic matter (DOM) in porewater and the overlying bottom water varied significantly along the transect, with lowest C / N in the lower estuary (5–6) and highest C / N (> 10) in the gulf. Large differences between the C / N ratios of porewater DOM and POM are mainly attributed to a combination of selective POM hydrolysis and elemental fractionation during subsequent DOM mineralization, but selective adsorption of DOM to mineral phases could not be excluded as a potential C / N fractionating process. The extent of this C- versus N- element partitioning seems to be linked to POM reactivity and redox conditions in the sediment porewaters. Our results thus highlight the variable effects selective organic matter (OM) preservation can have on bulk sedimentary C / N ratios, decoupling the primary source C / N signatures from those in sedimentary paleoenvironmental archives. Our study further underscores that the role of estuarine sediments as efficient sinks of bioavailable nitrogen is strongly influenced by the release of DON during early diagenetic reactions, and that DON fluxes from continental margin sediments represent an important internal source of N to the ocean.


2021 ◽  
Vol 230 ◽  
pp. 103931
Author(s):  
Jin-E Wei ◽  
Yan Chen ◽  
Jian Wang ◽  
Shi-Bo Yan ◽  
Hong-Hai Zhang ◽  
...  

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Ming Wen ◽  
Zhenxue Jiang ◽  
Kun Zhang ◽  
Yan Song ◽  
Shu Jiang ◽  
...  

The upper Ordovician-lower Silurian shale has always been the main target of marine shale gas exploration in southern China. However, the shale gas content varies greatly across different regions. The organic matter content is one of the most important factors in determining gas content; therefore, determining the enrichment mechanisms of organic matter is an important problem that needs to be solved urgently. In this paper, upper Ordovician-lower Silurian shale samples from the X-1 and Y-1 wells that are located in the southern Sichuan area of the upper Yangtze region and the northwestern Jiangxi area of the lower Yangtze region, respectively, are selected for analysis. Based on the core sample description, well logging data analysis, mineral and elemental composition analysis, silicon isotope analysis, and TOC (total organic carbon) content analysis, the upper Ordovician-lower Silurian shale is studied to quantitatively calculate its content of excess silicon. Subsequently, the results of elemental analysis and silicon isotope analysis are used to determine the origin of excess silicon. Finally, we used U/Th to determine the characteristics of the redox environment and the relationship between excess barium and TOC content to judge paleoproductivity and further studied the mechanism underlying sedimentary organic matter enrichment in the study area. The results show that the excess silicon from the upper Ordovician-lower Silurian shale in the upper Yangtze area is derived from biogenesis. The sedimentary water body is divided into an oxygen-rich upper water layer that has higher paleoproductivity and a strongly reducing lower water that is conducive to the preservation of sedimentary organic matter. Thus, for the upper Ordovician-lower Silurian shale in the upper Yangtze region, exploration should be conducted in the center of the blocks with high TOC contents and strongly reducing water body. However, the excess silicon in the upper Ordovician-lower Silurian shale of the lower Yangtze area originates from hydrothermal activity that can enhance the reducibility of the bottom water and carry nutrients from the crust to improve paleoproductivity and enrich sedimentary organic matter. Therefore, for the upper Ordovician-lower Silurian shale in the lower Yangtze region, exploration should be conducted in the blocks near the junction of the two plates where hydrothermal activity was active.


1996 ◽  
Vol 41 (3) ◽  
pp. 488-497 ◽  
Author(s):  
S. Peulvé ◽  
M.-A. Sicre ◽  
A. Saliot ◽  
J. W. De Leeuw ◽  
M. Baas

1994 ◽  
Vol 14 (4) ◽  
pp. 365-384 ◽  
Author(s):  
J. Faganeli ◽  
J. Pezdic ◽  
B. Ogorelec ◽  
M. Misˇicˇ ◽  
M. Najdek

Sign in / Sign up

Export Citation Format

Share Document