Principles of sampling, preparation and constituent selection for microphotometry in measurement of maturation of sedimentary organic matter

1977 ◽  
Vol 109 (1) ◽  
pp. 41-47 ◽  
Author(s):  
N. H. Bostick ◽  
B. Alpern
2021 ◽  
Vol 230 ◽  
pp. 103931
Author(s):  
Jin-E Wei ◽  
Yan Chen ◽  
Jian Wang ◽  
Shi-Bo Yan ◽  
Hong-Hai Zhang ◽  
...  

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Ming Wen ◽  
Zhenxue Jiang ◽  
Kun Zhang ◽  
Yan Song ◽  
Shu Jiang ◽  
...  

The upper Ordovician-lower Silurian shale has always been the main target of marine shale gas exploration in southern China. However, the shale gas content varies greatly across different regions. The organic matter content is one of the most important factors in determining gas content; therefore, determining the enrichment mechanisms of organic matter is an important problem that needs to be solved urgently. In this paper, upper Ordovician-lower Silurian shale samples from the X-1 and Y-1 wells that are located in the southern Sichuan area of the upper Yangtze region and the northwestern Jiangxi area of the lower Yangtze region, respectively, are selected for analysis. Based on the core sample description, well logging data analysis, mineral and elemental composition analysis, silicon isotope analysis, and TOC (total organic carbon) content analysis, the upper Ordovician-lower Silurian shale is studied to quantitatively calculate its content of excess silicon. Subsequently, the results of elemental analysis and silicon isotope analysis are used to determine the origin of excess silicon. Finally, we used U/Th to determine the characteristics of the redox environment and the relationship between excess barium and TOC content to judge paleoproductivity and further studied the mechanism underlying sedimentary organic matter enrichment in the study area. The results show that the excess silicon from the upper Ordovician-lower Silurian shale in the upper Yangtze area is derived from biogenesis. The sedimentary water body is divided into an oxygen-rich upper water layer that has higher paleoproductivity and a strongly reducing lower water that is conducive to the preservation of sedimentary organic matter. Thus, for the upper Ordovician-lower Silurian shale in the upper Yangtze region, exploration should be conducted in the center of the blocks with high TOC contents and strongly reducing water body. However, the excess silicon in the upper Ordovician-lower Silurian shale of the lower Yangtze area originates from hydrothermal activity that can enhance the reducibility of the bottom water and carry nutrients from the crust to improve paleoproductivity and enrich sedimentary organic matter. Therefore, for the upper Ordovician-lower Silurian shale in the lower Yangtze region, exploration should be conducted in the blocks near the junction of the two plates where hydrothermal activity was active.


1996 ◽  
Vol 41 (3) ◽  
pp. 488-497 ◽  
Author(s):  
S. Peulvé ◽  
M.-A. Sicre ◽  
A. Saliot ◽  
J. W. De Leeuw ◽  
M. Baas

1994 ◽  
Vol 14 (4) ◽  
pp. 365-384 ◽  
Author(s):  
J. Faganeli ◽  
J. Pezdic ◽  
B. Ogorelec ◽  
M. Misˇicˇ ◽  
M. Najdek

2014 ◽  
Vol 11 (11) ◽  
pp. 2977-2990 ◽  
Author(s):  
E. Bayraktarov ◽  
C. Wild

Abstract. Sediments are fundamental for the function of oligotrophic coral reef ecosystems because they are major places for organic matter recycling. The Tayrona National Natural Park (TNNP, Colombian Caribbean) is located between the population center Santa Marta (>455 000 inhabitants) in the southwest and several river mouths in the east. Here, coral reef sediments experience pronounced changes in environmental conditions due to seasonal coastal upwelling, but knowledge of relevant spatiotemporal effects on organic matter supply to the sediments and recycling processes is not available. Therefore, sediment traps were deployed monthly over 14 months complemented by assessment of sedimentary properties (e.g., porosity, grain size, content of particulate organic matter and pigments) and sedimentary O2 demand (SOD) at water-current-exposed and sheltered sites along distance gradients (12–20 km) to Santa Marta and the eastern river mouths (17–27 km). Findings revealed that seasonal upwelling delivered strong (75–79% of annual supply) pulses of labile organic matter mainly composed of fresh phytoplankton detritus (C : N ratio 6–8) to the seafloor. Sedimentary chlorophyll a contents and SOD increased significantly with decreasing distance to the eastern rivers, but only during upwelling. This suggests sedimentary organic matter supply controlled by nutrient-enriched upwelling waters and riverine runoff rather than by the countercurrent-located city of Santa Marta. Organic matter pulses led to significantly higher SOD (more than 30%) at the water-current-sheltered sites as compared to the exposed sites, ensuing a rapid recycling of the supplied labile organic matter in the permeable silicate reef sands.


Sign in / Sign up

Export Citation Format

Share Document