Evaluation of a satellite-derived model parameterized by three soil moisture constraints to estimate terrestrial latent heat flux in the Heihe River basin of Northwest China

2019 ◽  
Vol 695 ◽  
pp. 133787 ◽  
Author(s):  
Yunjun Yao ◽  
Yuhu Zhang ◽  
Qiang Liu ◽  
Shaomin Liu ◽  
Kun Jia ◽  
...  
2019 ◽  
Vol 11 (15) ◽  
pp. 1787
Author(s):  
Jia Xu ◽  
Yunjun Yao ◽  
Kanran Tan ◽  
Yufu Li ◽  
Shaomin Liu ◽  
...  

An accurate and spatially continuous estimation of terrestrial latent heat flux (LE) is crucial to the management and planning of water resources for arid and semi-arid areas, for which LE estimations from different satellite sensors unfortunately often contain data gaps and are inconsistent. Many integration approaches have been implemented to overcome these limitations; however, most suffer from either the persistent bias of relying on datasets at only one resolution or the spatiotemporal inconsistency of LE products. In this study, we exhibit an integration case in the midstream of the Heihe River Basin of northwest China by using a multi-resolution Kalman filter (MKF) method to develop continuous and consistent LE maps from satellite LE datasets across different resolutions. The Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16), the Landsat-based LE product derived from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor, and ground observations of eddy covariance flux tower from June to September 2012 are used. The integrated results illustrate that data gaps of MOD16 dropped to less than 0.4% from the original 27–52%, and the root-mean-square error (RMSE) between the LE products decreased by 50.7% on average. Our findings indicate that the MKF method has excellent capacity to fill data gaps, reduce uncertainty, and improve the consistency of multiple LE datasets at different resolutions.


Author(s):  
Liu Liu ◽  
Zezhong Guo ◽  
Guanhua Huang ◽  
Ruotong Wang

As the second largest inland river basin situated in the middle of the Hexi Corridor, Northwest China, the Heihe River basin (HRB) has been facing a severe water shortage problem, which seriously restricts its green and sustainable development. The evaluation of climate change impact on water productivity inferred by crop yield and actual evapotranspiration is of significant importance for water-saving in agricultural regions. In this study, the multi-model projections of climate change under the three Representative Concentration Pathways emission scenarios (RCP2.6, RCP4.5, RCP8.5) were used to drive an agro-hydrological model to evaluate the crop water productivity in the middle irrigated oases of the HRB from 2021–2050. Compared with the water productivity simulation based on field experiments during 2012–2015, the projected water productivity in the two typical agricultural areas (Gaotai and Ganzhou) both exhibited an increasing trend in the future 30 years, which was mainly attributed to the significant decrease of the crop water consumption. The water productivity in the Gaotai area under the three RCP scenarios during 2021–2050 increased by 9.2%, 14.3%, and 11.8%, while the water productivity increased by 15.4%, 21.6%, and 19.9% in the Ganzhou area, respectively. The findings can provide useful information on the Hexi Corridor and the Belt and Road to policy-makers and stakeholders for sustainable development of the water-ecosystem-economy system.


2014 ◽  
Vol 6 (11) ◽  
pp. 8283-8296 ◽  
Author(s):  
Feng Wu ◽  
Jinyan Zhan ◽  
Qian Zhang ◽  
Zhongxiao Sun ◽  
Zhan Wang

Sign in / Sign up

Export Citation Format

Share Document