Determining the limiting water level of early flood season by combining multiobjective optimization scheduling and copula joint distribution function: A case study of three gorges reservoir

2020 ◽  
Vol 737 ◽  
pp. 139789
Author(s):  
Chao Ma ◽  
Rui Xu ◽  
Wei He ◽  
Jinjin Xia
2013 ◽  
Vol 864-867 ◽  
pp. 2207-2212 ◽  
Author(s):  
Jing Zheng

In the middle and downstream area of the Yangtze River, low water levels had occurred at post-flood season or before the flood season in recent years, since the trial impoundment of the Three Gorges Reservoir (TGR) in 2008. Based on the analysis of the low water levels, both rating curve of main stations in the middle and lower reaches of the Yangtze River and the operation of TGR in the dry season were analyzed in study to reveal the effects of the impoundment of TGR on water level of downstream areas. The research results show that the water supplement of the TGR could raise the downstream water level, which has positive effect on water supplement and navigation in this area.


2020 ◽  
Vol 12 (16) ◽  
pp. 6427
Author(s):  
Chun Li ◽  
Huiming Tang ◽  
Yankun Wang

Reservoir water level fluctuation is one of the main extrinsic factors that could change the stress field in landslides, as well as the mechanical strength of geomaterials, hence affecting the deformation and stability of landslides. The largest reservoir landslide in the Three Gorges Reservoir area was selected for a case study. The impact of reservoir water level fluctuation is represented by the dynamic change in the underground seepage field and was thereby analyzed with numerical modeling. The deformation behavior considering the rheological properties of the slip zone soil was studied. The sudden change in the displacement–time curve was selected as the failure criterion for the investigated landslide. The evolution process of the accelerated deformation stage was divided into slow acceleration, fast acceleration, and rapid acceleration stages. The Huangtupo landslide is characterized by a retrogressive landslide and is currently in the creep deformation stage; the deformation mechanism and deformation characteristics are closely related to the reservoir water level fluctuation. Research was carried out by means of field investigation, in situ monitoring, and numerical simulation to provide a true and reliable result for stability evaluation.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenxiang Jiang ◽  
Jinping He

The traditional methods of diagnosing dam service status are always suitable for single measuring point. These methods also reflect the local status of dams without merging multisource data effectively, which is not suitable for diagnosing overall service. This study proposes a new method involving multiple points to diagnose dam service status based on joint distribution function. The function, including monitoring data of multiple points, can be established with t-copula function. Therefore, the possibility, which is an important fusing value in different measuring combinations, can be calculated, and the corresponding diagnosing criterion is established with typical small probability theory. Engineering case study indicates that the fusion diagnosis method can be conducted in real time and the abnormal point can be detected, thereby providing a new early warning method for engineering safety.


2021 ◽  
Vol 13 (15) ◽  
pp. 8490
Author(s):  
Hongjie Peng ◽  
Lei Hua ◽  
Xuesong Zhang ◽  
Xuying Yuan ◽  
Jianhao Li

In recent years, ecosystem service values (ESV) have attracted much attention. However, studies that use ecological sensitivity methods as a basis for predicting future urban expansion and thus analyzing spatial-temporal change of ESV are scarce in the region. In this study, we used the CA-Markov model to predict the 2030 urban expansion under ecological sensitivity in the Three Gorges reservoir area based on multi-source data, estimations of ESV from 2000 to 2018 and predictions of ESV losses from 2018 to 2030. Research results: (i) In the concept of green development, the ecological sensitive zone has been identified in Three Gorges reservoir area; it accounts for about 35.86% of the study area. (ii) It is predicted that the 2030 urban land will reach 211,412.51 ha by overlaying the ecological sensitive zone. (iii) The total ESV of Three Gorges Reservoir area showed an increasing trend from 2000 to 2018 with growth values of about USD 3644.26 million, but the ESVs of 16 districts were decreasing, with Dadukou and Jiangbei having the highest reductions. (iv) New urban land increases by 80,026.02 ha from 2018 to 2030. The overall ESV losses are about USD 268.75 million. Jiulongpo, Banan and Shapingba had the highest ESV losses.


Sign in / Sign up

Export Citation Format

Share Document