water level fluctuation
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 80)

H-INDEX

21
(FIVE YEARS 5)

Author(s):  
N. A. Muhadi ◽  
A. F. Abdullah ◽  
S. K. Bejo ◽  
M. R. Mahadi ◽  
A. Mijic

Abstract. Floods are the most frequent type of natural disaster that cause loss of life and damages to personal property and eventually affect the economic state of the country. Researchers around the world have been made significant efforts in dealing with the flood issue. Computer vision is one of the common approaches being employed which include the use of image segmentation techniques for image understanding and image analysis. The technique has been used in various fields including in flood disaster applications. This paper explores the use of a hybrid segmentation technique in detecting water regions from surveillance images and introduces a flood index calculation to study water level fluctuations. The flood index was evaluated by comparing the result with water level measured by sensor on-site. The experimental results demonstrated that the flood index reflects the trend of water levels of the river. Thus, the proposed technique can be used in detecting water regions and monitoring the water level fluctuation of the river.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3380
Author(s):  
Shengjun Yan ◽  
Tao Sun ◽  
Xuan Wang ◽  
Dan Liu ◽  
Yunlong Zhang ◽  
...  

Variations in the hydrological regime are among the anthropogenic pressures affecting biological assemblage structure in shallow freshwater lakes. We estimated the effects of the water level fluctuation range on the temporal dissimilarity of the macroinvertebrate community by sampling benthic macroinvertebrate assemblages monthly in 2017 and bimonthly in 2018. Then, we applied a boosted regression trees (BRT) model to quantitatively analyzing the relationship between macroinvertebrate abundance and microhabitat factors in different seasons. To distinguish differences in water level fluctuations at the sample site scale, we proposed a variable, namely, the percentage of water level fluctuation range (PWLFR). The results were as follows. (1) An increased water level fluctuation range would lead to more temporally heterogeneous macroinvertebrate communities. Temporal dissimilarity of macroinvertebrates increased linearly in response to increasing water level fluctuation range. (2) Species abundance presented seasonal characteristics, and the dominant factors affecting species abundance varied with the seasons. PWLFR was the dominant variable explaining macroinvertebrate abundance in summer. Macroinvertebrate abundance showed positive effects with increasing PWLFR. (3) The interaction between chlorophyll a and PWLFR in summer promoted an increase in macroinvertebrate abundance. These findings may provide a basis for the formulation of effective ecological water replenishment management decisions aimed at maintaining the stability of shallow lake ecosystems in arid and semi-arid regions.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3013
Author(s):  
Peipeng Wu ◽  
Jean-Christophe Comte ◽  
Lijuan Zhang ◽  
Shuhong Wang ◽  
Bin Chang

Managed aquifer recharge operations are often conducted in near-bank areas to regulate water resources or reduce seawater intrusion. Yet little is known about the influence of surface water level fluctuations at different temporal scales on MAR performance. A generalized conceptual model was developed based on an investigation site in Western China as a basis to simulate the response surface water level fluctuations on the water table, artificially recharged water lens (formed by the artificially recharged water), groundwater flow paths and average travel times (which is an important control on how quickly contaminants are flushed out of aquifers), and the discharge of the artificially recharged aquifer during the surface water level fluctuation. The results showed a fluctuating groundwater table in the artificially recharged near-bank aquifer under the influence of surface water level fluctuations. The peak values of the increment of the groundwater table induced by artificial recharge decreased with the increase of the period and amplitude of surface water level fluctuation, but the trough values of the increment of water table increases with that. The penetration depth of surface water into the aquifer with a fluctuating surface water level leads to a decreasing increment of the groundwater table which follows a power law. The fluctuating surface water level leads to dynamic changes of artificially recharged water lens morphology and a thinner artificially recharged water lens. A mixing zone of recharged water and ambient water could be found in the artificially recharged near-bank area, which is expected to lead to modifications in the geochemical conditions in the artificially recharged near-bank aquifer. A longer period of surface water level fluctuation leads to a longer average travel time, but the larger penetration depth of surface water and amplitude lead to a shorter average travel time. The peak discharge of the near-bank aquifer was found to decrease with the period of surface water level fluctuation, but it increases with penetration depth and amplitude. This study is important in providing insights into the performance of near-bank managed aquifer recharge with respect to surface water level fluctuation.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2651
Author(s):  
Qiang Liu ◽  
Liqiao Liang ◽  
Xiaomin Yuan ◽  
Sirui Yan ◽  
Miao Li ◽  
...  

Water level fluctuations play a critical role in regulating vegetation distribution, composition, cover and richness, which ultimately affect evapotranspiration. In this study, we first explore water level fluctuations and associated impacts on vegetation, after which we assess evapotranspiration (ET) under different water levels. The normalized difference vegetation index (NDVI) was used to estimate the fractional vegetation cover (Fv), while topography- and vegetation-based surface-energy partitioning algorithms (TVET model) and potential evaporation (Ev) were used to calculate ET and water evaporation (Ep). Results show that: (1) water levels were dramatically affected by the combined effect of ecological water transfer and climate change and exhibited significant decreasing trends with a slope of −0.011 m a−2; and (2) as predicted, there was a correlation between water level fluctuation at an annual scale with Phragmites australis (P. australis) cover and open-water area. Water levels also had a controlling effect on Fv values, an increase in annual water levels first increasing and then decreasing Fv. However, a negative correlation was found between Fv values and water levels during initial plant growth stages. (iii) ET, which varied under different water levels at an annual scale, showed different partition into transpiration from P. australis and evaporation from open-water area and soil with alterations between vegetation and open water. All findings indicated that water level fluctuations controlled biological and ecological processes, and their structural and functional characteristics. This study consequently recommends that specifically-focused ecological water regulations (e.g., duration, timing, frequency) should be enacted to maintain the integrity of wetland ecosystems for wetland restoration.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2502
Author(s):  
Junjie Lin ◽  
Chang Yan ◽  
Dan Liu ◽  
Yaling Du ◽  
Chunmei Xiong ◽  
...  

The water level fluctuation (WLF) zone is one of the dominant sources of total dissolved inorganic nitrogen (TDN) export via net nitrogen (N) mineralization in the Three Gorges Reservoir (TGR). However, antibiotics pollution may impact the process of TND exports from WLF zone in the TGR, especially under drying-rewetting processes and climate warming, and thus increasing the risk of eutrophication in the tributaries of the TGR. The effects of the antibiotics Griseofulvin (GIN) and Fosfomycin (FIN) with 0, 0.2 and 0.4 g kg−1 net N mineralization rate (NMR) from WLF-zone soil in the Pengxi river, a typical tributary of the Yangtze River, under 25 and 35 °C were estimated in 30-day flooding and drying incubations. The results showed that GIN concentrations, temperatures and their interaction significantly affect net-nitrification rates (NNR) and NMR under drying and did not significantly affect NNR under flooding. FIN concentrations and temperatures solely influenced the NNR under flooding. The amounts of TDN exports via NMR without antibiotics from the WLF zone of Pengxi River are 6883.8 (flooding, 25 °C), 9987.3 (flooding, 35 °C), 9781.6 (drying, 25 °C), and 27,866.5 (drying, 35 °C) t year−1, which is 21.0, 29.8, 30.4 and 84.8 times of the permissible Class A discharge in China according to (GB18918-2002). Thus, the NMR of WLF zone should be controlled whether there is antibiotics pollution or not, especially during the dry period for alleviating water eutrophication. This study will be helpful for the assessment of nitrogen budgets in the WLF zone to eutrophication in the Three Gorges Reservoir.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2371
Author(s):  
Yanfu Que ◽  
Jiayi Xie ◽  
Jun Xu ◽  
Weitao Li ◽  
Ezhou Wang ◽  
...  

Seasonal water-level fluctuations may lead to changes in river nutrients, which causes corresponding changes in the trophic structure of an aquatic food web, and finally affects the whole ecosystem. In this study, we focused on the Ganjing River, a tributary of the Yangtze River, China. Common organisms were sampled and measured for carbon and nitrogen stable isotopes in the wet and dry seasons, respectively, and the relative contributions of different food sources were combined to construct the food web, so as to realize the influence of water-level fluctuation on aquatic food web. Our results showed that basal food sources for fish consumers were endogenous carbon sources such as POM, zooplankton and zoobenthos in the dry season, while high water level exposed fish to more diverse and abundant food sources, and the contribution proportions of exogenous carbon sources (e.g., terrestrial detritus) to consumers increased in the wet season. In parallel, the abundance and species diversity of fish were higher than those in the dry season. Most fish species had relatively higher trophic levels in the dry season compared to the wet season, because the increase in fish densities led to an increase in piscivores fish. The food web was composed of planktonic and benthic food chains in the dry season. During the wet season, the planktonic food chain was dominant, followed by the herbivorous food chain, and the benthic food chain was relatively less important. Therefore, water-level fluctuation may alter the trophic linkages within fish communities, which contributed to a more complex and interconnected food web. Moreover, as we expect, the stable isotope analysis food web was broadly in line with the gut content analysis food web.


Sign in / Sign up

Export Citation Format

Share Document