CO2 emissions from electricity generation in China during 1997–2040: The roles of energy transition and thermal power generation efficiency

2021 ◽  
Vol 773 ◽  
pp. 145026
Author(s):  
Juan Wang ◽  
Ce Song ◽  
Rong Yuan
2022 ◽  
Vol 9 ◽  
Author(s):  
Minghui Liu ◽  
Chunhua Ju ◽  
Yan Wang

China’s power industry is in a critical transformation period. The new round of power system reform in 2015 will have a profound impact on China’s power industry. Therefore, it’s necessary to analyze the influencing factors of thermal power generation efficiency. Based on the thermal power generation industry related data in China’s 30 provinces from 2005 to 2017, this paper studies the impacts of market segmentation on thermal power generation efficiency in China. And the empirical result shows that the market segmentation exhibit significant negative effects on the thermal power generation efficiency, that is, the thermal power generation efficiency significantly decrease 1.6799 for each unit increase of market segmentation index of thermal power industry. Besides, by decomposing the dynamic thermal power efficiency index, we find that the “innovation effect” is the primary channel for the market segmentation to make effects on the thermal power generation efficiency. Furthermore, our findings are still robust after considering endogenous problems and eliminating the relevant data. Finally, research conclusions of our study paper provide empirical supports for the efficient development of China’s power market.


2011 ◽  
Vol 685 ◽  
pp. 230-238 ◽  
Author(s):  
Bo Xue Sun ◽  
Xian Zheng Gong ◽  
Yu Liu ◽  
Wen Juan Chen ◽  
Zhi Hong Wang

With the increasing seriousness of climate change problem, carbon footprint has become a very useful method to measure carbon emissions and has been widely accepted. In modern industry, electricity is almost consumed in all industry processes, and electricity is the first "footprint" of most products. As carbon emissions is always measured by theoretical estimation from input inventory but not experimental data, the input inventory of electricity generation becomes very important in carbon footprint analysis. Electricity generation is a very complex process, where all input items inter-dependant on each other and the whole system is an infinite cycle net. But in the traditional calculation model of input inventory, the interaction effect of production system is usually neglected. The major work of this study is to make clear the carbon emissions of provision 1kWh thermal power generation to consumers in China in 2006, since thermal power generation takes the most proportion of Chinese electricity. This study used a matrix-based model which includes interaction effect of the system to calculate the input inventory of electricity generation, and then the carbon emissions of thermal electricity generation in China in 2006 can be calculated. The final result of this paper can be used in carbon footprint, Life Cycle Assessment or some other related fields.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruo-Mei Wang ◽  
Ze Tian ◽  
Fang-rong Ren

Abstract Background The energy generation efficiencies of thermal power and hydropower, which are the two main forces of electric power in China, are important factors affecting the energy conservation, emission reduction, and green development of the country’s whole power industry. Methods Considering regional differences and multiple efficient decision-making units (DMUs), this research uses the meta-Frontier super-efficiency slack-based measure (meta-SE-SBM) undesirable model to comprehensively evaluate the efficiencies of hydropower and thermal power generation in China. The CO2 emissions of thermal power generation are taken as the undesirable output. Results The ranking of the average meta-efficiency of thermal power generation in China is Eastern China > Central China > Western China, and all regions show an upward trend. However, the ranking of the average meta-efficiency of hydropower generation is Western China > Central China > Eastern China, and all these regions present a downward trend. In 2017, the technology gap ratio (TGR) values for the thermal power generation efficiency of the eastern and western regions showed a rising trend, while that for the central region showed a declining trend. The TGR values of the hydropower generation efficiency of the western region continued to increase, while those of the central and eastern regions decreased. The development trends of the TGR values of the thermal power or hydropower generation efficiencies of the three regions were not consistent with each other, indicating that technological convergence has not been achieved. In the three regions, the technology gaps in hydropower have slightly expanded, but the technology gaps in thermal power have gradually narrowed. The undesirable output CO2 of the thermal power energy efficiency of the three regions is in a surplus, and the generation of hydropower in the eastern and central regions is insufficient. Conclusions The government and power industry managers should fully consider regional heterogeneity in the efficiency of hydropower and thermal power to reduce the technology gap in China. The thermal power industry is relatively mature, but its CO2 emissions should be controlled. The hydropower industry needs further policy support to promote an efficiency improvement in it under the condition of resource endowments.


2019 ◽  
Vol 29 ◽  
pp. 24-41 ◽  
Author(s):  
Daniel Akinyele ◽  
Olubayo Babatunde ◽  
Chukwuka Monyei ◽  
Lanre Olatomiwa ◽  
Adebunmi Okediji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document