hypersonic propulsion
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3690
Author(s):  
Claudio Bruno ◽  
Antonella Ingenito

This paper summarizes and discusses some critical aspects of flying hypersonically. The first is the L/D (lift over drag) ratio determining thrust and that in turn depends on the slenderness Küchemann’s τ parameter. This second parameter is found to depend on the relative importance of wave versus friction drag. Ultimately, all engineering drag is argued to depend on vorticity formed at the expense of the vehicle kinetic energy, thus requiring work by thrust. Different mixing strategies are discussed and shown to depend also on mechanisms forming vorticity when the regime is compressible. Supersonic combustion is briefly analyzed and found, at sufficiently high combustor Mach, to take place locally at constant volume, unlike conventional Brayton cycles.


2021 ◽  
Vol 118 (20) ◽  
pp. e2102244118
Author(s):  
Daniel A. Rosato ◽  
Mason Thornton ◽  
Jonathan Sosa ◽  
Christian Bachman ◽  
Gabriel B. Goodwin ◽  
...  

Future terrestrial and interplanetary travel will require high-speed flight and reentry in planetary atmospheres by way of robust, controllable means. This, in large part, hinges on having reliable propulsion systems for hypersonic and supersonic flight. Given the availability of fuels as propellants, we likely will rely on some form of chemical or nuclear propulsion, which means using various forms of exothermic reactions and therefore combustion waves. Such waves may be deflagrations, which are subsonic reaction waves, or detonations, which are ultrahigh-speed supersonic reaction waves. Detonations are an extremely efficient, highly energetic mode of reaction generally associated with intense blast explosions and supernovas. Detonation-based propulsion systems are now of considerable interest because of their potential use for greater propulsion power compared to deflagration-based systems. An understanding of the ignition, propagation, and stability of detonation waves is critical to harnessing their propulsive potential and depends on our ability to study them in a laboratory setting. Here we present a unique experimental configuration, a hypersonic high-enthalpy reaction facility that produces a detonation that is fixed in space, which is crucial for controlling and harnessing the reaction power. A standing oblique detonation wave, stabilized on a ramp, is created in a hypersonic flow of hydrogen and air. Flow diagnostics, such as high-speed shadowgraph and chemiluminescence imaging, show detonation initiation and stabilization and are corroborated through comparison to simulations. This breakthrough in experimental analysis allows for a possible pathway to develop and integrate ultra-high-speed detonation technology enabling hypersonic propulsion and advanced power systems.


Author(s):  
Qing Xu ◽  
Haowei Li ◽  
Yaoxun Feng ◽  
Xiaoning Li ◽  
Changming Lin ◽  
...  

The aspirated hypersonic air-breathing propulsion system requires a large amount of power generation, but its special structure makes it impossible to adopt common power generation methods. The high-temperature gaseous hydrocarbon fuel thermal power generation (TPG) system was developed to solve the power generation problem for hypersonic air-breathing propulsion system. But off-design operating conditions of the hypersonic propulsion system results in a more complex process for both propulsion system and the TPG system. To better analyzing the dynamic thermos-physical characteristics of hypersonic airbreathing propulsion system considering thermal-mechanical coupling process among cooling/TPG system, a dynamic analytical model was developed, and the dynamic thermos-physical characteristics of TPG system under different off-design working conditions were conducted. It can be concluded from the analytical results that the dynamic process of thermos-physical characteristics shows a complex trend under the flight Mach number and fuel equivalence ratio off-design working conditions. Such complexity of dynamic characteristics brings difficulties in fuel supply for the propulsion system.


Aerospace ◽  
2019 ◽  
Vol 6 (12) ◽  
pp. 135
Author(s):  
Maxim Cooper ◽  
Ashish Alex Sam ◽  
Apostolos Pesyridis

The focus of this study is to design a combustion system able to sustain hypersonic flight at Mach 8. A Dual-Mode Free-Jet combustion chamber design, first tested in 2010 by NASA, is being adapted to run on hydrogen fuel instead of ethylene while addressing the excessive thermal heat load. This study is part of the FAME (Flight at Mach Eight) project, with the primary objective to design and analyse the engine configuration for a hypersonic commercial aircraft. This CFD analysis and validation study, the first to replicate this combustion chamber design, provides detailed instructions on the combustion system design. The analysis from this study can be used for future research to successfully reach a sustainable design and operation of a Dual-Mode Free-Jet combustion chamber. The 53% size reduction in the combustion system represents significant progress which encourages future research regarding in the design of combustion systems for hypersonic propulsion systems.


2019 ◽  
Vol 876 ◽  
pp. 264-287 ◽  
Author(s):  
Pengfei Yang ◽  
Hoi Dick Ng ◽  
Honghui Teng

Oblique detonation waves (ODWs) have been studied widely to facilitate their employment in hypersonic propulsion, but the effects of continuous unsteady inflow have never been addressed so far. Thus, the present study investigates wedge-induced oblique detonations in unsteady flow via numerical simulations based on the reactive Euler equations with a two-step induction–reaction kinetic model. As a first step, the chemical and flow parameters are chosen for the simplest structure such that the ODW initiation occurs under a smooth transition with a curved shock. After a steady ODW with smooth initiation transition is established, the inflow is then subject to a continuous sinusoidal density/temperature disturbance. Cases with single-pulse inflow variation are also simulated to clarify whether the observed phenomena are derived solely from the continuous disturbance. Two aspects are analysed to investigate the features of ODWs in unsteady flow, namely, the formation of triple points on the surface, and the movement of the reactive front position. On the formation of triple points, the continuous disturbance generates at most one pair of triple points, less than or equal to the number of triple points in single-pulse cases. This indicates that the effects of continuous disturbance weaken the ability to generate the triple points, although there appear more triple points convected downstream on the surface at any given instant. On the movement of the reactive front, oscillatory behaviours are induced in either single-pulse or continuous disturbance cases. However, more complicated dynamic displacements and noticeable effects of unsteadiness are observed in the cases of continuous disturbance, and are found to be sensitive to the disturbance wavenumber, $N$. Increasing $N$ results in three regimes with distinct behaviours, which are quasi-steady, overshooting oscillation and unstable ODW. For the quasi-steady case with low $N$, the reactive front oscillates coherently with the inflow disturbance with slightly higher amplitude around the initiation region. The overshooting oscillation generates the most significant variation of downstream surface in the case of modest $N$, reflecting a resonance-like behaviour of unsteady ODW. In the case of high $N$, the disturbed ODW surface readjusts itself with local unstable features. It becomes more robust and the reactive front of the final unstable ODW structure is less susceptible to flow disturbance.


2019 ◽  
Vol 84 ◽  
pp. 143-157 ◽  
Author(s):  
Dong Zhang ◽  
Shuo Tang ◽  
Lin Cao ◽  
Feng Cheng ◽  
Fan Deng

Sign in / Sign up

Export Citation Format

Share Document