Performance and stability of biogas recirculation-driven anaerobic digestion system coupling with alkali addition strategy for sewage sludge treatment

Author(s):  
Jiamin Zhao ◽  
Tingting Hou ◽  
Zhongfang Lei ◽  
Kazuya Shimizu ◽  
Zhenya Zhang
2019 ◽  
Vol 230 ◽  
pp. 499-507 ◽  
Author(s):  
Tian Yuan ◽  
Yanfei Cheng ◽  
Xuezhi Wang ◽  
Yang Yu ◽  
Zhenya Zhang ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (59) ◽  
pp. 35718-35728
Author(s):  
Reza Barati rashvanlou ◽  
Abbas Rezaee ◽  
Mahdi Farzadkia ◽  
Mitra Gholami ◽  
Majid Kermani

Micro-aeration as a pretreatment method improves the efficiency of anaerobic digestion of municipal sewage sludge and consequently promotes the methane production.


2006 ◽  
Vol 53 (11) ◽  
pp. 221-226 ◽  
Author(s):  
M. Minamiyama ◽  
S. Ochi ◽  
Y. Suzuki

Many environmental problems caused by endocrine disruptors (EDs) have been reported. It is reported that EDs flow into sewage treatment plants, and it has been pointed out that these may be shifted from the wastewater treatment process to the sludge treatment process. Little is known about the fate of EDs accumulated in sewage sludge, so we carried out a study to clarify the fate of EDs in sewage sludge treatment processes, especially in an anaerobic digestion process. In this study, nonylphenol (NP) was selected as a target ED. Nonylphenol ethoxylates (NPnEO) or nonylphenoxy acetic acids (NPnEC), which were the precursor of NP, were added to an anaerobic digestion process, and mass balance was investigated. The following results were obtained from the anaerobic digestion experiments. (1) NP1EO was injected to an anaerobic digestion testing apparatus that was operated at a retention time of approximately 28 d and a temperature of 35 °C with thickened sludge sampled from an actual wastewater treatment plant. Approximately 40% of the injected NP1EO was converted to NP. (2) NP1EC was injected to an anaerobic digestion testing apparatus with thickened sludge. As a result, almost all injected NP1EC was converted to NP. When NP2EC was injected, NP2EC was not converted to NP until the 20th day.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6262 ◽  
Author(s):  
Roberta Ferrentino ◽  
Fabio Merzari ◽  
Luca Fiori ◽  
Gianni Andreottola

The present study addresses the coupling of hydrothermal carbonization (HTC) with anaerobic digestion (AD) in wastewater treatment plants. The improvement in biomethane production due to the recycling back to the anaerobic digester of HTC liquor and hydrochar generated from digested sludge is investigated and proved. Mixtures of different compositions of HTC liquor and hydrochar, as well as individual substrates, were tested. The biomethane yield reached 102 ± 3 mL CH4 g−1 COD when the HTC liquor was cycled back to the AD and treated together with primary and secondary sludge. Thus, the biomethane production was almost doubled compared to that of the AD of primary and secondary sludge (55 ± 20 mL CH4 g−1 COD). The benefit is even more significant when both the HTC liquor and the hydrochar were fed to the AD of primary and secondary sludge. The biomethane yield increased up to 187 ± 18 mL CH4 g−1 COD when 45% of hydrochar, with respect to the total feedstock, was added. These results highlight the improvement that the HTC process can bring to AD, enhancing biomethane production and promoting a sustainable solution for the treatment of the HTC liquor and possibly the hydrochar itself.


2007 ◽  
Vol 11 (3) ◽  
pp. 153-164 ◽  
Author(s):  
Mario Tarantini ◽  
Patrizia Buttol ◽  
Lorenzo Maiorino

The majority of pollutants that affect wastewater are concentrated by treatment processes in sludge; it is therefore critical to have a suitable evaluation methodology of sludge management options to analyze if pollution is redirected from water to other media, such as air and soil. Life cycle assessment is one of the most widely known and internationally accepted methodologies to compare environmental impacts of processes and systems and to evaluate their sustainability in the entire life cycle. In this study the methodology was applied to assess and compare three scenarios of urban sewage sludge treatment and disposal: sludge anaerobic digestion followed by dedicated incineration, sludge incineration without previous digestion, and sludge anaerobic digestion followed by composting. The potential benefits of spreading the compost to soil were not included in the system boundaries even if, due to its nutrients contents and soil improving features, compost could partially replace the use of commercial products. The study was aimed at finding out the environmental critical points of the treatment alternatives selected and at providing a technical and scientific contribution for further debates with national and local authorities on the environmental optimization of sewage sludge management. Life cycle assessment results confirmed the major contribution of electricity and methane consumption on several environmental impact categories. Incineration contributes more than sludge composting to almost all categories, although the heavy metals content of urban wastewater sludge raises substantial concerns when composted sludge is spread to soil. In this paper the models adopted, the hypotheses assumed and the main findings of the study are presented and discussed. .


Sign in / Sign up

Export Citation Format

Share Document