Contrasting vegetation response to climate change between two monsoon regions in Southwest China: The roles of climate condition and vegetation height

Author(s):  
Han Sun ◽  
Xiangping Wang ◽  
Dayong Fan ◽  
Osbert Jianxin Sun
2020 ◽  
Vol 201 ◽  
pp. 103080 ◽  
Author(s):  
Xuemei Chen ◽  
Duo Wu ◽  
Xiaozhong Huang ◽  
Feiya Lv ◽  
Mark Brenner ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
James S. Clark ◽  
Robert Andrus ◽  
Melaine Aubry-Kientz ◽  
Yves Bergeron ◽  
Michal Bogdziewicz ◽  
...  

AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.


2019 ◽  
Vol 26 (3) ◽  
pp. 352-367 ◽  
Author(s):  
Ziyan Liao ◽  
Lin Zhang ◽  
Michael P. Nobis ◽  
Xiaogang Wu ◽  
Kaiwen Pan ◽  
...  

10.5772/64960 ◽  
2016 ◽  
Author(s):  
Jianhua Wang ◽  
Yaohuan Hang ◽  
Dong Jiang ◽  
Xiaoyang Song

2019 ◽  
Vol 41 (4) ◽  
pp. 335
Author(s):  
Z. G. Sun ◽  
J. S. Wu ◽  
F. Liu ◽  
T. Y. Shao ◽  
X. B. Liu ◽  
...  

Identifying the effects of climate change and human activities on the degradation and restoration of terrestrial ecosystems is essential for sustainable management of these ecosystems. However, our knowledge of methodology on this topic is limited. To assess the relative contribution of climate change and human activities, actual and potential net primary productivity (NPPa and NPPp respectively), and human appropriation of net primary productivity (HANPP) were calculated and applied to the monitoring of forest, grassland, and cropland ecosystems in Yunnan–Guizhou–Sichuan Provinces, southwest China. We determined annual means of 476 g C m–2 year–1 for NPPa, 1314 g C m–2 year–1 for NPPp, and 849 g C m–2 year–1 for HANPP during the period between 2007 and 2016. Furthermore, the area with an increasing NPPa accounted for 75.12% of the total area of the three ecosystems. Similarly, the areas with increasing NPPp and HANPP accounted for 77.60 and 57.58% of the study area respectively. Furthermore, we found that ~57.58% of areas with ecosystem restored was due to climate change, 23.39% due to human activities, and 19.03% due to the combined effects of human activities and climate change. In contrast, climate change and human activities contributed to 19.47 and 76.36%, respectively, of the areas of degraded ecosystem. Only 4.17% of degraded ecosystem could be attributed to the combined influences of climate change and human activities. We conclude that human activities were mainly responsible for ecosystem degradation, whereas climate change benefitted ecosystem restoration in southwest China in the past decade.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 220 ◽  
Author(s):  
WenQing Li ◽  
MingMing Shi ◽  
Yuan Huang ◽  
KaiYun Chen ◽  
Hang Sun ◽  
...  

Salicaceae is a family of temperate woody plants in the Northern Hemisphere that are highly valued, both ecologically and economically. China contains the highest species diversity of these plants. Despite their widespread human use, how the species diversity patterns of Salicaceae plants formed remains mostly unknown, and these may be significantly affected by global climate warming. Using past, present, and future environmental data and 2673 georeferenced specimen records, we first simulated the dynamic changes in suitable habitats and population structures of Salicaceae. Based on this, we next identified those areas at high risk of habitat loss and population declines under different climate change scenarios/years. We also mapped the patterns of species diversity by constructing niche models for 215 Salicaceae species, and assessed the driving factors affecting their current diversity patterns. The niche models showed Salicaceae family underwent extensive population expansion during the Last Inter Glacial period but retreated to lower latitudes during and since the period of the Last Glacial Maximum. Looking ahead, as climate warming intensifies, suitable habitats will shift to higher latitudes and those at lower latitudes will become less abundant. Finally, the western regions of China harbor the greatest endemism and species diversity of Salicaceae, which are significantly influenced by annual precipitation and mean temperature, ultraviolet-B (UV-B) radiation, and the anomaly of precipitation seasonality. From these results, we infer water–energy dynamic equilibrium and historical climate change are both the main factors likely regulating contemporary species diversity and distribution patterns. Nevertheless, this work also suggests that other, possibly interacting, factors (ambient energy, disturbance history, soil condition) influence the large-scale pattern of Salicaceae species diversity in China, making a simple explanation for it unlikely. Because Southwest China likely served as a refuge for Salicaceae species during the Last Glacial Maximum, it is a current hotspot for endemisms. Under predicted climate change, Salicaceae plants may well face higher risks to their persistence in southwest China, so efforts to support their in-situ conservation there are urgently needed.


Sign in / Sign up

Export Citation Format

Share Document