Assessment of the regional agricultural water-land Nexus in China: A green-blue water perspective

2022 ◽  
Vol 804 ◽  
pp. 150192
Author(s):  
Xuan Huang ◽  
Huan Fang ◽  
Mengyang Wu ◽  
Xinchun Cao
Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 696
Author(s):  
Aihua Long ◽  
Jiawen Yu ◽  
Xiaoya Deng ◽  
Xinlin He ◽  
Haifeng Gao ◽  
...  

The Tarim River Basin in China has predominantly assumed the task of commodity cotton and other high water-intensive crop production in recent years. The spatial matching status of agricultural water and land resources is a prerequisite for local economic development. This paper provides an insight into the spatiotemporal variation trends of agricultural production water footprint and oasis farmland in the Tarim River Basin. The degree of spatial mismatching between oasis farmland and crop production water footprints studied in this paper found how the crop water footprint affected the change in oasis farmland area by sensitivity analysis. Time series data covering the period of 1990–2015 were used for the study. The results showed that the annual variation of crop production water footprint and oasis farmland area have experienced upward trends in Tarim River Basin. The blue water makes the largest contribution to the components of the crop production water footprint in each district (all exceeded 77%). The crop production water footprint and oasis farmland area tend to aggregate towards the eastern region. The level of spatial mismatch between the blue water footprint and farmland area fluctuated during the study period, but it was gradually remedied after 2000, while the spatial mismatch between green water footprint and farmland area gradually worsened. The number of districts with mid and high sensitivity to changes in blue water footprint continuously increased during 1990–2005, which revealed that the change in blue water footprint has an increasing influence on oasis farmland. The results can provide operable recommendations for efficient use of water resources, maintaining oasis suitable farmland scale and agricultural sustainable development in the Tarim River Basin.


2019 ◽  
Vol 17 ◽  
Author(s):  
Somayeh Rezaei Kalvani ◽  
Amir Hamzah Sharaai ◽  
Latifah Abd Manaf ◽  
Amir Hossein Hamidian

Evaluation of supply chain of water consumption contributes toward reducing water scarcity, as it allows for increased water productivity in the agricultural sector. Water Footprint (WF) is a powerful tool for water management; it accounts for the volume of water consumption at high spatial and temporal resolution. The objective of this research is to investigate the water footprint trend of crop production in Tehran from 2008 to 2015 and to assess blue water scarcity in the agricultural sector. Water consumption of crop production was evaluated based on the WF method. Evapotranspiration was evaluated by applying the CROPWAT model. Blue water scarcity was evaluated using the blue water footprint-to-blue water availability formula. The results demonstrate that pistachio, cotton, walnut, almond, and wheat have a large WF, amounting to 11.111 m3/kg, 4,703 m3/kg, 3,932 m3/kg, 3,217 m3/kg, and 1.817 m3/kg, respectively. Agricultural blue water scarcity amounted to 0.6 (severe water stress class) (2015–2016). Agricultural water consumption in Tehran is unsustainable since it contributes to severe blue water scarcity. Tehran should reduce agricultural water scarcity by reducing the water footprint of the agricultural sector.


2013 ◽  
Vol 6 (1) ◽  
pp. 645-684 ◽  
Author(s):  
S. Multsch ◽  
Y. A. Al-Rumaikhani ◽  
H.-G. Frede ◽  
L. Breuer

Abstract. The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr−1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.


2019 ◽  
Vol 17 (10) ◽  
Author(s):  
Somayeh Rezaei Kalvani ◽  
Amir Hamzah Sharaai ◽  
Latifah Abd Manaf ◽  
Amir Hossein Hamidian

Evaluation of supply chain of water consumption contributes toward reducing water scarcity, as it allows for increased water productivity in the agricultural sector. Water Footprint (WF) is a powerful tool for water management; it accounts for the volume of water consumption at high spatial and temporal resolution. The objective of this research is to investigate the water footprint trend of crop production in Tehran from 2008 to 2015 and to assess blue water scarcity in the agricultural sector. Water consumption of crop production was evaluated based on the WF method. Evapotranspiration was evaluated by applying the CROPWAT model. Blue water scarcity was evaluated using the blue water footprint-to-blue water availability formula. The results demonstrate that pistachio, cotton, walnut, almond, and wheat have a large WF, amounting to 11.111 m3/kg, 4,703 m3/kg, 3,932 m3/kg, 3,217 m3/kg, and 1.817 m3/kg, respectively. Agricultural blue water scarcity amounted to 0.6 (severe water stress class) (2015–2016). Agricultural water consumption in Tehran is unsustainable since it contributes to severe blue water scarcity. Tehran should reduce agricultural water scarcity by reducing the water footprint of the agricultural sector.


2013 ◽  
Vol 6 (4) ◽  
pp. 1043-1059 ◽  
Author(s):  
S. Multsch ◽  
Y. A. Al-Rumaikhani ◽  
H.-G. Frede ◽  
L. Breuer

Abstract. The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr−1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.


2016 ◽  
Vol 15 (1) ◽  
pp. 175-188 ◽  
Author(s):  
Mohsen Salarpour ◽  
Milad Jajarmizadeh ◽  
Sobri Harun ◽  
Rozi Abdullah

Sign in / Sign up

Export Citation Format

Share Document