tarim river basin
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 47)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Vol 446 ◽  
pp. 1-6
Author(s):  
I.I. Kabak ◽  
◽  
J. Schmidt ◽  

A new species of the genus Cymindis Latreille, 1805 (Carabidae: Har¬palinae) is described from the Tarim River basin, border to the Taklamakan Desert, Xinjiang-Uygur Autonomous Region of China. Cymindis (Tarsostinus) rolandi sp. n. is similar to C. (Tarsostinus) equestris Gebler, 1825, but differs from the latter in the shape of the pronotum and the glabrous eyes.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3459
Author(s):  
Jie Wei ◽  
Zhulan Nie ◽  
Fenfen Ji ◽  
Longhui Qiu ◽  
Jianzhong Shen

The Kizil reservoir in the Tarim River basin is an important habitat for the native Schizothoracinae fish (including Aspiorhynchus laticeps, Schizothorax biddulphi, Schizothorax eurystomus, Schizothorax intermedius and Schizothorax barbatus). Unfortunately, these species are threatened by many exotic fish, such as Ctenopharyngodon idellus, Silurus asotus. As an isolated habitat, the Kizil reservoir is an ideal area for studying biological invasions. However, the impact of invasive species on indigenous species in this reservoir remains unknown. In this study, the niche width and niche overlap between invasive and indigenous species in Kizil reservoir were studied based on stable isotope analysis. The results showed that niche width of two invasive species, S. asotus and C. idellus, was larger than that of native fish species, which confirmed the hypotheses that successful invaders have larger niche width. The niche overlap analysis showed that the two invasive species had high niche overlap with native fish species, which meant that there might be intensive interspecific competitions between them. The invasion of non-native species could be the main reason for the decrease of native species in the Kizil reservoir.


Author(s):  
Lihong Meng ◽  
Youcun Liu ◽  
Weijing Ma ◽  
Qingyun Wang ◽  
Xiaoli Mo ◽  
...  

Abstract As one of the most serious water-shortage regions of China, the shortage of water resources and ecological deuteration of the Tarim River Basin has increasingly attracted attention, and management and sustainable utilization of water resources rely mostly on the understanding of their carrying capacity. In the present study, water resources carrying capacity of the Tarim River Basin was evaluated using a multi-dimensional perspective of nature, society and economy factors based on a variable fuzzy evaluation model for the 2018 hydroclimatic conditions. Evaluation model results rated Aksu, Kizilsu, Kashi and Hotan districts as grade 2, where water resources current use and overexploitation have reached a relatively high level combined with a limited water resources carrying capacity. Bazhou district, where the water resources carrying capacity is relatively higher was evaluated and rated as grade 1 by the model. It is urgent to put forward some strategies in order to protect and improve the water resources carrying capacity in the Tarim River Basin which include promoting more efficient utilization of water conservation schemes, strengthening the long-term investment in environmental protection, improving the ratio of industrial wastewater treatment and reducing the industrial water quota. The results of the present study are aimed to be a beneficial guide in the planning and management of the Tarim's River basin water resources and possibly for other similar river basins.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1315
Author(s):  
Hualin Li ◽  
Jianzhong Feng ◽  
Linyan Bai ◽  
Jianjun Zhang

Quantifying the phenological variations of Populus euphratica Olivier (P. euphratica) resulting from climate change is vital for desert ecosystems. There has previously been great progress in the influence of climate change on vegetation phenology, but knowledge of the variations in P. euphratica phenology is lacking in extremely arid areas. In this study, a modified method was proposed to explore P. euphratica phenology and its response to climate change using 18-year Global Land Surface Satellite (GLASS) leaf area index (LAI) time series data (2000–2017) in the upper Tarim River basin. The start of the growing season (SOS), length of the growing season (LOS), and end of the growing season (EOS) were obtained with the dynamic threshold method from the reconstructed growth time series curve by using the Savitzky–Golay filtering method. The grey relational analysis (GRA) method was utilized to analyze the influence between the phenology and the key climatic periods and factors. Importantly, we also revealed the positive and negative effects between interannual climate factors and P. euphratica phenology using the canonical correlation analysis (CCA) method, and the interaction between the SOS in spring and EOS in autumn. The results revealed that trends of P. euphratica phenology (i.e., SOS, EOS, and LOS) were not significant during the period from 2000–2017. The spring temperature and sunshine duration (SD) controlled the SOS, and the EOS was mainly affected by the temperature and SD from June–November, although the impacts of average relative humidity (RH) and precipitation (PR) on the SOS and EOS cannot be overlooked. Global warming may lead to SOS advance and EOS delay, and the increase in SD and PR may lead to earlier SOS and later EOS. Runoff was found to be a more key factor for controlling P. euphratica phenology than PR in this region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aihong Fu ◽  
Weihong Li ◽  
Yaning Chen ◽  
Yi Wang ◽  
Haichao Hao ◽  
...  

AbstractThe Tarim River Basin in Xinjiang, China, has a typical desert riparian forest ecosystem. Analysis of the resilience of this type of ecosystem under extreme drought conditions and ecological rehabilitation projects could provide a theoretical basis for understanding ecosystem stability and resistance, and provide new ecological rehabilitation measures to improve ecosystem resilience. We employed a quantitative framework to assess net primary productivity (NPP) resilience, emphasizing four aspects of NPP dynamics: NPP, NPP stability, NPP resistance, and maximum NPP potential. We compared ecosystem resilience across four time periods: before the implementation of ecological rehabilitation projects (1990–2000), during construction and partial implementation of ecological rehabilitation projects (2001–2012), during the initial project stage of ecological rehabilitation (2013–2015), and during the late project stage of ecological rehabilitation (2016–2018). There are three main finding of this research. (1) Mean NPP was increased significantly from 2013 and was decreased from 2016, especially in the main stream of the Tarim River and in the basins of eight of its nine tributary rivers. (2) Ecosystem resilience in 2013–2018 was greater than in 1990–2012, with the greatest NPP stability, mean NPP and NPP resistance, especially in part one of the river basin (the Aksu River, the Weigan-Kuche River, the Dina River, the Kaidu-Konqi River, and the main stream of the Tarim River). Ecosystem resilience in 2001–2012 was lowest when compared to 1990–2000 and 2013–2018, with lowest mean NPP, NPP stability, NPP resistance and maximum NPP potential, particularly in part two of the river basin (the Kashigr River, the Yarkand River and the Hotan River basins). Therefore, part one was most affected by ecological restoration projects. When 2013–2018 was divided into two distinct stages, 2013–2015 and 2016–2018, resilience in the latter stage was the lowest, with lowest mean NPP, NPP resistance and maximum NPP potential, especially in the main stream of the Tarim River. This may be due to unreasonable water conveyance in 2014–2015. (3) Ecological resilience has increased significantly in 2013–2015 after the implementation of ecological water transfer projects, river regulation, and natural vegetation enclosure projects. Ecosystem resilience could continue to increase even more in the future with the continued implementation of reasonable ecological water transfer projects.


2021 ◽  
Vol 13 (18) ◽  
pp. 10263
Author(s):  
Yang Wang ◽  
Tingting Xia ◽  
Remina Shataer ◽  
Shuai Zhang ◽  
Zhi Li

Land-use and cover change is an important indicator for exploring global change trends, with in-depth research on land use and its driving factors being of particular significance in forging ecologically sustainable development. The present work used the Tarim River Basin as the study area, while the land-use transfer matrix, normalized difference vegetation index (NDVI), regional center-of-gravity model, and night-time-light remote-sensing mutual correction method were employed to explore temporal and spatial characteristics of land-use change and its driving factors. The results show the following. (1) From 1990 to 2018, land-use types in the study area significantly changed, with the cultivated land increasing by 73.9% and grassland area decreasing at a rate of 6.38 × 104 hm2 per year. (2) Areas with a natural vegetation NDVI above 0.2 appeared to follow a growth trend, with an area growth of 259.12 × 104 hm2 at a rate of 14.39 × 104 hm2/a. Average annual temperature and precipitation showed a fluctuating upward trend. (3) The center of gravity of land-use type area moved significantly. The center of gravity of cultivated land was moving in the same direction as the GDP and population center of gravity, migrating to the northeast. The migration distance of the center of gravity of cultivated land area was 212.59 km, the center of gravity migration rate of GDP was 14.44 km/a, and the population center of gravity was 812.21 km. (4) During the study period, the brightness of night lights in the study area was distributed in a circular shape, with more in the northwest and less in the southeast. Brightness gradually increased and showed an expansion trend, increasing from 0.3% to 6.3%. Among the influencing factors of spatial change of land-use change, natural factors such as climate change were related to the process of land-use/-cover change in the Tarim River Basin. Overall, human activities had the most obvious impact on land-use change.


Sign in / Sign up

Export Citation Format

Share Document