Assessing cumulative water impacts from shale oil and gas production: Permian Basin case study

Author(s):  
Bridget R. Scanlon ◽  
Robert C. Reedy ◽  
Brad D. Wolaver
Fuel ◽  
2020 ◽  
Vol 259 ◽  
pp. 116207 ◽  
Author(s):  
Shikha Sharma ◽  
Vikas Agrawal ◽  
Rawlings N. Akondi

2020 ◽  
Vol 6 (8) ◽  
pp. eaav2110
Author(s):  
Daniel Raimi

Kondash et al. provide a valuable contribution to our understanding of water consumption and wastewater production from oil and gas production using hydraulic fracturing. Unfortunately, their claim that the water intensity of energy production using hydraulic fracturing has increased in all regions is incorrect. More comprehensive data show that, while the water intensity of production may have increased in regions such as the Permian basin, it has decreased by 74% in the Marcellus and by 19% in the Eagle Ford region. This error likely stems from an improper method for estimating energy production from wells: The authors use the median well to represent regional production, which systematically underestimates aggregate production volumes. Across all regions, aggregate data suggest that the water intensity of oil and natural gas production using hydraulic fracturing has increased by 19%. There also appears to be an error in estimates for water consumption in the Permian basin.


2020 ◽  
Vol 60 (2) ◽  
pp. 583
Author(s):  
Clare Anderson

The Paris Agreement, signed in 2016, has the objective of limiting the global temperature rise to 1.5°C to substantially reduce the effects of climate change. To achieve this objective, significant and unprecedented deep cuts in carbon emissions are required, as set out in the Intergovernmental Panel on Climate Change’s special report on Global Warming of 1.5°C released in October 2018. To enable this ambitious target, global reductions in carbon emissions will need to be markedly reduced to an average of net zero by 2050 and, as such, will have profound effects on hydrocarbon (oil and gas) production in the coming decades. This paper presents a road map of opportunities for the reduction of carbon emissions from hydrocarbon production, specifically natural gas. It includes technologies for reducing carbon emissions from process streams and utility streams. A case study is used to illustrate the opportunities, along with a discussion on technology readiness for several options.


2021 ◽  
Author(s):  
Hamid Behmanesh ◽  
Chris R. Clarkson ◽  
S. Hamed Tabatabaie ◽  
Louis Mattar

2020 ◽  
Vol 10 (4) ◽  
pp. 85-94
Author(s):  
Dr. Kareem A. Alwan ◽  
Hayder A. AlAttaby

At the beginning of petroleum industry evolving the regulation did not focus on environmental issues, it was, mainly, looking to natural resources (oil and gas) production and protection. By the time, environmental and safety implications started to be the highest priority, as a result of undesirable impact of oil operations on plant. Huge numbers of dry wells were abandoned according to environmental regulations to prevent side effects which involved contamination of shallow water aquifers, surface seepage of hydrocarbon (whether oil or gas) or salty water, potential hazardous of explosion or soil contaminations, and water contamination at offshore unplugged wells. Based on the hazards above, the main objectives of plugging and abandonment operations is to achieve isolation and protection of all fresh and near fresh water zones, and all future commercial zones, as well as prevent leaks in perpetuity from or into the well and remove surface equipment and cut pipe to a mandated level below the surface. In this paper, an Iraqi oil well was studied as a case study of abandonment processes. The well represents a danger to people, environment and subsurface fresh water; due to unusual raised pressure in different annuluses and copious surface leak from wellhead components while production. Worthily to say that, it is seldom in Iraq to abandon the wells in current time, according to good reservoirs situation. The reasons and justifications of this well plugging, depending on economic analysis and investigation were studied, and explained, according to international practices and procedures of such treatments. The workover option is most economic option, but it was eliminated due to failure in ensuring the well safety and severe environmental impact which expected. According to investigation, pressure and laboratory tests were revealed that P&A is mandatory for this well as soon as possible.


2021 ◽  
Author(s):  
Itziar Irakulis-Loitxate ◽  
Luis Guanter ◽  
Yin-Nian Liu ◽  
Daniel J. Varon ◽  
Joannes D. Maasakkers ◽  
...  

<p>The Permian Basin is known for its extensive oil and gas production, which has increased rapidly in recent years becoming the largest producing basin in the United States. It is also responsible for almost half of the methane emissions from all oil and gas producing regions in the country. Given the urgent need to reduce greenhouse gas emissions, it is crucial to identify and characterize the point sources of emissions. To this end, we have combined three new high-resolution hyperspectral sensors data onboard the GF-5, ZY1 and PRIMA satellites to create the first regional study to identify methane sources and measure the emitted quantities from each source. With data collected over several days in 2019 and 2020, we have identified a total of 37 point source emissions with flux rates >500kg/h, that is, a high concentration of extreme emission point sources that account for nearly 40% of the Permian annual emissions. Also, we have found that new infrastructure (post-2018) is responsible for almost 60% of the detected emissions, in many cases (21% of the cases) due to inefficient use of flaring of the gas that they cannot store. With this study, we demonstrate that hyperspectral satellite data are a powerful tool for the detection and quantification of strong methane point emissions.</p>


Sign in / Sign up

Export Citation Format

Share Document