Aging features of metal(loid)s in biochar-amended soil: Effects of biochar type and aging method

Author(s):  
Xiaodong Yang ◽  
Liuwei Wang ◽  
Jiameng Guo ◽  
Huixia Wang ◽  
Ondřej Mašek ◽  
...  
Keyword(s):  
2019 ◽  
Vol 35 (2) ◽  
pp. 215-224
Author(s):  
Poonam Rani ◽  
◽  
Adarsh Kumar ◽  
Ramesh Chandra Arya ◽  
◽  
...  

2007 ◽  
Author(s):  
Theresa Jain ◽  
Molly Juillerat ◽  
Jonathan Sandquist ◽  
Mike Ford ◽  
Brad Sauer ◽  
...  
Keyword(s):  

1995 ◽  
Vol 31 (5-6) ◽  
pp. 311-315 ◽  
Author(s):  
Timothy M. Straub ◽  
Ian L. Pepper ◽  
Charles P. Gerba

Current methods for the detection of enteric viruses in soil involve elution of viruses from soil colloids using beef extract or other proteins. These eluates are then assayed in cell culture and observed daily for cytopathic effects (CPE). While this method is suitable for detection of enteric viruses by cell culture, these eluates contain humic acids and heavy metals that interfere with polymerase chain reaction (PCR) detection. Using beef extract eluates prepared from sludge amended soil, 10 different methods of eluate purification were evaluated for their ability to remove PCR inhibition and maximize sensitivity. The treatment method providing the greatest sensitivity of poliovirus detection by PCR was the combination of Sephadex G-50 and Chelex-100. Using this method 2 plaque forming units (PFU) could be detected after reverse transcription and 30 cycles of PCR. Thirty (30) cycles of seminested PCR were performed on these samples to verify nucleic acid sequences and increase sensitivity after the first 30 cycles of PCR. Using seminested PCR, sensitivity of detection using the Sephadex G-50 and Chelex-100 treatment method to 0.2 PFU. In addition to providing excellent sensitivity for viruses in sludge amended soils, this treatment method is relatively simple compared to other methods.


Biochar ◽  
2021 ◽  
Author(s):  
Ngitheni Winnie-Kate Nyoka ◽  
Ozekeke Ogbeide ◽  
Patricks Voua Otomo

AbstractTerrestrial and aquatic ecosystems are increasingly threatened by pesticide pollution resulting from extensive use of pesticides, and due to the lack of regulatory measures in the developing world, there is a need for affordable means to lessen environmental effects. This study aimed to investigate the impact of biochar amendment on the toxicity of imidacloprid to life-cycle parameters and biomarker responses of the earthworm Eisenia fetida. E. fetida was exposed to 10% biochar-amended and non-amended OECD artificial soils spiked with 0, 0.75, 1.5, 2.25 and 3 mg imidacloprid/kg for 28 days. An LC50 of 2.7 mg/kg was only computed in the non-amended soil but not in the biochar-amended soil due to insignificant mortality. The EC50 calculated in the non-amended soil (0.92 mg/kg) for reproduction (fertility) was lower than the one computed in the biochar amended (0.98 mg/kg), indicating a decrease in toxicity in the biochar-amended substrate. Significant weight loss was observed at the two highest imidacloprid treatments in the non-amended soil and only at the highest treatment in the biochar-amended substrate, further highlighting the beneficial effects of biochar. Catalase activity decreased significantly at the two highest concentrations of non-amended soil. Yet, in the amended soil, the activity remained high, especially in the highest concentration, where it was significantly higher than the controls. This indicated more severe oxidative stress in the absence of biochar. In all non-amended treatments, there was a significant acetylcholinesterase inhibition, while lower inhibition percentages were observed in the biochar-amended soil. In most endpoints, the addition of biochar alleviated the toxic effects of imidacloprid, which shows that biochar has the potential to be useful in soil remediation. However, there is still a need for field studies to identify the most effective application rate of biochar for land application.


2021 ◽  
Vol 223 ◽  
pp. 112606
Author(s):  
Dengxiao Zhang ◽  
Guanghui Du ◽  
Wenjing Zhang ◽  
Ya Gao ◽  
Hongbin Jie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document