Determination of the phase transformation zone at a crack tip in a shape memory alloy exhibiting asymmetry between tension and compression

2008 ◽  
Vol 59 (3) ◽  
pp. 321-323 ◽  
Author(s):  
C LEXCELLENT ◽  
F THIEBAUD
2012 ◽  
Vol 457-458 ◽  
pp. 409-412
Author(s):  
Bo Zhou ◽  
Tai Yue Yin ◽  
Xu Kun Li

This paper focuses on the thermo-mechanical behaviors of shape memory alloy (SMA) board with a crack subjected to bending load. The stress field near the crack tip of SMA board is described according to the solution of linear elastic mechanics. The phase transformation behaviors of SMA board are formulated based on Zhou’s one-dimensional phase transformation model. The phase transformation zone equation is derived to describe the phase transformation zone near the crack tip.


2011 ◽  
Vol 142 ◽  
pp. 138-141 ◽  
Author(s):  
Bo Zhou ◽  
Xiao Gang Guo ◽  
Gang Ling Hou ◽  
Xu Kun Li

In this paper a phase transformation equation is supposed to describe the phase transformation behaviors of the shape memory alloy (SMA) under complex stress state. The stress field near crack-tip of mode I in SMA at various temperatures is investigated based on the supposed phase transformation equation and linear elastic fracture mechanics. Results show both the martensite region and the mixed region of martensite and austenite near the crack-tip become larger with the decrease of temperature. The fracture mechanics behaviors of SMA are much influenced by the temperature.


2011 ◽  
Vol 148-149 ◽  
pp. 875-878
Author(s):  
Bo Zhou ◽  
Jun Lv ◽  
Gang Ling Hou ◽  
Ya Ru Pan

In this paper, the phase transformation behaviors of shape memory alloy (SMA) in the complex stress state are formulated based the one-dimensional phase transformation model supposed by Zhou and Yoon. The stress field near the crack tip of mode II in SMA is described based on linear elastic fracture mechanics. The phase transformation behaviors of SMA near the crack tip of Mode II are numerically investigated.


Author(s):  
Theocharis Baxevanis ◽  
Yves Chemisky ◽  
Dimitris Lagoudas

Detailed finite-element calculations are carried out to examine the path-dependence of the J-integral in a pseudoelastic Shape Memory Alloy (SMA) for mode I loading under the approximation of linear kinematics. The evolution equation for the transformation strain is consistent with the classical rate-independent J2 flow theory. The small-scale nonlinearity assumption is employed using a boundary layer approach, wherein the actual boundary conditions have been replaced by the requirement of an asymptotic approach to the linear elastic inverse-square-root stress/strain distribution at large distances from the crack tip. The J-integral is found to be path-dependent inside the transformation zone, close to the crack tip.


2012 ◽  
Vol 457-458 ◽  
pp. 744-747
Author(s):  
Bo Zhou ◽  
Yan Yan Hou ◽  
Jun Lv

This paper focuses on the thermo-mechanical behaviors of a shape memory alloy (SMA) plate with a crack of mode I. A phase transformation equation is supposed to express the phase transformation behaviors of SMA under complex stress state. The stress field near the crack tip is described based on linear elastic mechanics. The martensitic phase transformation zones near the crack tip at various temperatures are numerically determined.


2017 ◽  
Vol 39 (4) ◽  
pp. 375-386
Author(s):  
Christian Lexcellent

Depending of the shape of the crack tip e.g. with or without curvature, the size of the phase transformation surface between a mother phase A (austenite) and a producted phase M (martensite) is different. The presentation is focussed to the modes I and II (opening and shearing modes). The elastic stress field around the crack tip without curvature is known in the litterature and the use of Linear Elastic Mechanical Theory is consistent with the deformations amplitude associated the beginning of the phase transformation (A \(\Rightarrow\) M). In order to take into account the curvature at the crack tip, one uses the approximated expressions of Creager and Paris (1967). A special attention is devoted to take into account the asymmetry between tension and compression behavior in the surfaces prediction.


Sign in / Sign up

Export Citation Format

Share Document