ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
Latest Publications


TOTAL DOCUMENTS

98
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By ASMEDC

9780791854716

Author(s):  
Andrea Spaggiari ◽  
Eugenio Dragoni

Magnetorheological (MR) fluids have a lot of applications in the industrial world, but sometimes their properties are not performing enough to meet system requirements. It has been found that in shear mode MR fluids exhibits a pressure dependency called squeeze strengthen effect. Since a lot of MR fluid based devices work in flow mode (i.e. dampers) this paper investigates the behaviour in flow mode under pressure. The system design is articulated in three steps: hydraulic system design, magnetic circuit design and design of experiment. The experimental apparatus is a cylinder in which a translating piston displaces the fluid without the use of standard gear pumps, incompatible with MR fluids. The experimental apparatus measures the MR fluid yield stress as a function of pressure and magnetic field allowing the yield shear stress to be calculated. A statistical analysis of the results shows that the squeeze strengthen effect is present in flow mode as well and the presence of internal pressure is able to enhance the performance of MR fluid by nearly ten times.


Author(s):  
Leon M. Headings ◽  
Gregory N. Washington

The goal of this research is to develop a framework for replacing conventional heating and cooling systems with distributed, continuously and electrically controlled, building-integrated thermoelectric (BITE) heat pumps. The coefficient of performance of thermoelectric heat pumps increases as the temperature difference across them decreases and as the amplitude of temperature oscillations decreases. As a result, this research examines how thermal insulation and mass elements can be integrated with thermoelectrics as part of active multi-layer structures in order to minimize net energy consumption. In order to develop BITE systems, an explicit finite volume model was developed to model the dynamic thermal response of active multi-layer wall structures subjected to arbitrary boundary conditions (interior and exterior temperatures and interior heat loads) and control algorithms. Using this numerical model, the effects of wall construction on net system performance were examined. These simulation results provide direction for the ongoing development of BITE systems.


Author(s):  
Muhammad Omer Khan ◽  
Ellen Chan ◽  
Siu N. Leung ◽  
Hani Naguib ◽  
Francis Dawson ◽  
...  

This paper studies the development of new multifunctional liquid crystal polymeric composites filled with graphene nano platelets (GNPs) for electronic packaging applications. A series of parametric studies were conducted to study the effect of GNP content on the thermal conductivity of LCP-based nanocomposites. Graphene, ranging from 10 wt. % to 50 wt. %, were melt-compounded with LCP using a twin-screw compounder. The extrudates were ground and compression molded into small disc-shaped specimens. The thermal conductivity of LCP matrix was observed to have increased by more than 1000% where as the electrical conductivity increased by 13 orders of magnitude with the presence of 50 wt% GNP fillers. The morphology of the composites was analyzed using SEM micrographs to observe the dispersion of filler within the matrix. These thermally conductive composites represent potential cost-effective materials to injection mold three-dimensional, net-shape microelectronic enclosures with superior heat dissipation performance.


Author(s):  
Ju¨rgen Maas ◽  
Dirk Gu¨th

The transient behavior of MRF actuators is an important property for certain applications that is mainly affected by three delays, occurring from the dynamic properties of the coil current, the magnetic field and the torque generation by the MRF. In order to investigate the transient behavior of the generated torque with respect to the magnetic field, which is mainly affected by the motion of the MR particles in the carrier fluid, the mentioned response time of the electrical and magnetic domains must be in an appropriated ratio in comparison to the MRF response time to obtain reliable results by experiments. Therefore a special disc-type test actuator with outstanding dynamics is designed that minimizes the delays by the use of an ultrafast current control and a magnetic core made of soft ferrite material for preventing the effects of eddy currents. For the experimental investigation of the transient behavior of MR fluids, the small signal as well as the large signal behavior is analyzed for different test signals and load conditions of the actuator. Various results of the investigated transient behavior are shown finally for two different MR fluids featuring response times of about 1 ms for the fluid itself and switching times of about 4 ms for the MRF actuator.


Author(s):  
Nicole Lewis ◽  
Stefan Seelecke

The effects of temperature boundary conditions and the resulting performance of an SMA actuator were studied for an SMA wire coupled with a stiff spring. The wire was actuated via joule heating under both adiabatic and isothermal boundary conditions. The resulting temperature, phase fraction, strain and stress profiles along the wire were studied together with the wire tip displacement. The simulations were conducted using the finite element program ABAQUS, and a fully thermo-mechanically coupled shape memory alloy (SMA) actuator model was used to simulate the behavior. ABAQUS’s user material (UMAT) feature was utilized to model the SMA wire using a mesoscopic free energy model [1] in order to accurately describe the thermomechanically coupled actuator behavior. The results from the simulations highlighted the differences between homogeneous and inhomogeneous profiles, and a 34% difference in actuation stroke between the two cases was observed.


Author(s):  
Nicholas J. Morris ◽  
Joaquin M. Gutierrez ◽  
Ever J. Barbero ◽  
Darran R. Cairns

Polyvinyl alcohol (PVA) films with embedded electrically-responsive liquid crystal (LC) ellipsoids were fabricated to develop a membrane coating featuring tunable roughness. Membranes (∼30 microns thick) were placed between opposing pieces of indium-tin oxide (ITO) glass, creating electrodes for creation of a uniform electric field. Applied voltages ranged from 0V–350 V, as films were observed using an optical microscope. Thin-film interference patterns were observed in various regions of each film and were measured. Contour plots of film displacement were created and showed elevations across the observed region. The area of the first dark fringe regions, assumed to be in contact with the top glass surface, were measured as a function of applied voltage. The maximum displacement of the film was estimated to reach 1.5 microns and the area in contacted with the top glass surface increased 127% between 0–350 V. Finite element modelling results illustrate the influence of polarity on the roughness of the film surface.


Author(s):  
Christopher B. Churchill ◽  
John Shaw

Two thirds of the energy generated in the United States is currently lost as waste heat, representing a potentially vast source of green energy. Low Carnot efficiency is an inherent limitation of extracting energy from low-grade thermal sources (temperature gradients near or below 100C), and SMA heat engines could be useful for those applications where low weight and packaging are overriding considerations. Although many shape memory alloy (SMA) heat engines have been proposed to harvest this energy, and a few have been built and demonstrated in past decades, they have not been commercially successful. Some of the barriers to commercialization include their perceived low thermodynamic efficiency, high material cost, low material durability, complexities when using fluid baths, and the lack of robust constitutive models and design tools. Recent advances, however, in SMA longevity, reductions in materials costs (as production volumes have increased), and a better understanding of SMA behavior have stimulated new research on SMA heat engines. The Lightweight Thermal Energy Recovery System (LighTERS) is an ongoing ARPA-E funded collaboration between General Motors, HRL Laboratories, Dynalloy, Inc., and the University of Michigan. In the LighTERS engine (a refinement of the Dr. Johnson engine), a closed loop SMA spring element generates mechanical power by pulling itself between alternating hot and cold air regions. The first known thermo-mechanical model for this type of heat engine was developed in three stages. First, the constitutive and heat transfer relationships of an SMA spring form were characterized experimentally. Second, those relationships were used as inputs in a steady-state model of the heat engine, including both convective heat transfer and large-deformation mechanics. Finally, the model was validated successfully against measurements of a experimental heat engine built at HRL Labs.


Author(s):  
Daniel P. Cole ◽  
Monica Rivera ◽  
Mark Bundy

A major concern in the design of micro-robotic systems is an on-board energy supply capable of providing the necessary power requirements, while limiting the volume/mass burden to the vehicle. The conventional solution to this design problem is to maximize the energy density of the on-board power supply. An alternative approach is to replace single-function structural components with multifunctional structural-energy storage materials. The mass and volume savings associated with the material substitution could potentially result in improved endurance and/or increased payload (e.g. video camera, microphone, chemical/biological sensors). In this study, carbon nanotube (CNT) based composites were used to fabricate structural-energy storage materials. Specifically, supercapacitor electrodes were constructed from paper covered with CNT ink and from polymer matrices infused with aligned CNT forests. The composites were subject to bulk mechanical tests in order to characterize their suitability as structural components in micro-autonomous systems. Tensile tests on the paper composites show directional and strain rate dependencies. The CNT-ink deposition process was found to degrade the elastic modulus of the paper by approximately 50%, although the tensile strength of the materials was largely unaffected. Preliminary electrical characterization of the CNT-coated electrode materials indicate that the nanomaterials potentially reach a percolation threshold after multiple depositions, resulting in a conductive surface network. Initial results indicate that improvements in the electrical properties of the CNT paper electrodes are met with reductions in the mechanical performance of the composites.


Author(s):  
Nickolaus M. Bruno ◽  
Constantin Ciocanel ◽  
Heidi P. Feigenbaum ◽  
Alex Waldauer

This paper presents experimental results and model predictions on power harvesting/sensing capabilities of magnetic shape memory alloys (MSMAs). The theoretical predictions are made using a refined thermodynamic based constitutive model, developed initially by Kiefer and Lagoudas. In an attempt to better predict the observed experimental response of the material at high frequencies, dynamic effects are included in the simulation. Furthermore, internal magnetic and external Lorentz forces are also included in the analysis and their effect on the material’s overall response is discussed. The experimental program is carried out at frequencies of up to 40Hertz in two control modes, i.e. load and displacement control. A comparison between the simulated and experimental material response and measured voltage outputs, over a range of frequencies, is presented and discussed.


Author(s):  
Micheal McKee ◽  
Xiaojie Wang ◽  
Faramarz Gordaninejad

This study focuses on the effect of temperature on the performance of compressible magnetorheological fluid dampers (CMRDs). In addition to change of properties in the presence of a magnetic field, magnetorheological fluids (MRFs) are temperature-dependent materials that their compressibility and rheological properties change with temperature, as well. A theoretical model that incorporates the temperature-dependent properties of MRF is developed to predict the behavior of a CMRD. An experimental study is also conducted using an annular flow CMRD with varying temperatures, motion frequencies, and magnetic fields. The experimental results are used to verify the theoretical model. The effect of temperature on the MRF properties, such as, the bulk modulus, yield stress and viscosity, are explored. It is found that the shear yield stress of the MRF remains unchanged within the testing range while both the plastic viscosity, using the Bingham plastic model, and the bulk modulus of the MRF decrease as temperature increases. In addition, it is observed that both the stiffness and the energy dissipation decrease with an increase in temperature.


Sign in / Sign up

Export Citation Format

Share Document