Towards CFD-based optimization of urban wind conditions: Comparison of Genetic algorithm, Particle Swarm Optimization, and hybrid algorithm

2021 ◽  
pp. 103565
Author(s):  
Z. Kaseb ◽  
M. Rahbar
2018 ◽  
Vol 10 (01) ◽  
pp. 1850009 ◽  
Author(s):  
Zhe Xiong ◽  
Xiao-Hui Li ◽  
Jing-Chang Liang ◽  
Li-Juan Li

In this study, a novel multi-objective hybrid algorithm (MHGH, multi-objective HPSO-GA hybrid algorithm) is developed by crossing the heuristic particle swarm optimization (HPSO) algorithm with a genetic algorithm (GA) based on the concept of Pareto optimality. To demonstrate the effectiveness of the MHGH, the optimizations of four unconstrained mathematical functions and four constrained truss structural problems are tested and compared to the results using several other classic algorithms. The results show that the MHGH improves the convergence rate and precision of the particle swarm optimization (PSO) and increases its robustness.


2012 ◽  
Vol 498 ◽  
pp. 115-125 ◽  
Author(s):  
H. Hachimi ◽  
Rachid Ellaia ◽  
A. El Hami

In this paper, we present a new hybrid algorithm which is a combination of a hybrid genetic algorithm and particle swarm optimization. We focus in this research on a hybrid method combining two heuristic optimization techniques, genetic algorithms (GA) and particle swarm optimization (PSO) for the global optimization. Denoted asGA-PSO, this hybrid technique incorporates concepts fromGAandPSOand creates individuals in a new generation not only by crossover and mutation operations as found inGAbut also by mechanisms ofPSO. The performance of the two algorithms has been evaluated using several experiments.


2021 ◽  
Vol 12 (3) ◽  
pp. 148-162
Author(s):  
Justice Kojo Kangah ◽  
Justice Kwame Appati ◽  
Kwaku F. Darkwah ◽  
Michael Agbo Tettey Soli

This work presents an ensemble method which combines both the strengths and weakness of particle swarm optimization (PSO) with genetic algorithm (GA) operators like crossover and mutation to solve the vehicle routing problem. Given that particle swarm optimization and genetic algorithm are both population-based heuristic search evolutionary methods as used in many fields, the standard particle swarm optimization stagnates particles more quickly and converges prematurely to suboptimal solutions which are not guaranteed to be local optimum. Although both PSO and GA are approximation methods to an optimization problem, these algorithms have their limitations and benefits. In this study, modifications are made to the original algorithmic structure of PSO by updating it with some selected GA operators to implement a hybrid algorithm. A computational comparison and analysis of the results from the non-hybrid algorithm and the proposed hybrid algorithm on a MATLAB simulation environment tool show that the hybrid algorithm performs quite well as opposed to using only GA or PSO.


Sign in / Sign up

Export Citation Format

Share Document