scattering spectrum
Recently Published Documents


TOTAL DOCUMENTS

388
(FIVE YEARS 49)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Jingdong Chen ◽  
Xuan Li ◽  
Jinliang Zheng ◽  
Xingmei Ye ◽  
Huichuan Lin

Abstract Gallium (Ga) nanospheres (NSs) with diameters ranging from 50 to 300 nm are fabricated by using femtosecond laser ablation. The forward scattering of large Ga nanospheres measured using dark-field microscopy is determined by the coherent interaction between dipole and quadrupole resonances while it becomes governed by the dipole resonance when evanescent wave excitation is employed. We demonstrate that the scattering spectrum and pattern of quadrupole of large Ga NS can be resolved by using a cross-polarized analyzer in the collection channel. The experimental observations agree well with the numerical simulation based on the complex refractive index of liquid Ga.


Author(s):  
R S Fishman ◽  
George Ostrouchov ◽  
Feng Ye

Abstract This work describes two methods to fit the inelastic neutron-scattering spectrum S(q, ω) with wavector q and frequency ω. The common and well-established method extracts the experimental spin-wave branches ωn(q) from the measured spectra S(q ,ω) and then minimizes the difference between the observed and predicted frequencies. When n branches of frequencies are predicted but the measured frequencies overlap to produce only m < n branches, the weighted average of the predicted frequencies must be compared to the observed frequencies. A penalty is then exacted when the width of the predicted frequencies exceeds the width of the observed frequencies. The second method directly compares the measured and predicted intensities S(q ,ω) over a grid {q i , ωj} in wavevector and frequency space. After subtracting background noise from the observed intensities, the theoretical intensities are scaled by a simple wavevector-dependent function that reflects the instrumental resolution. The advantages and disadvantages of each approach are demonstrated by studying the open honeycomb material Tb2Ir3Ga9.


Author(s):  
Kyohei Higashiyama ◽  
Shohei MORI ◽  
Mototaka ARAKAWA ◽  
Satoshi Yashiro ◽  
Yasushi Ishigaki ◽  
...  

Abstract Noninvasive measurement of the degree of red blood cell (RBC) aggregation is useful for evaluating blood properties. In the present paper, we proposed a method to estimate the size of RBC aggregates without using the power spectrum of the posterior wall by introducing a reference scattering spectrum. The reference power spectra were calculated using the power spectrum measured for an ultrafine wire with a hemispherical tip. They were applied to the size estimation of microparticles simulating RBC aggregates. The estimated sizes were close to the true values, which shows that the calculated reference power spectra were suitable for accurate size estimation. The proposed method was also applied to in vivo measurements, and the estimated sizes between at rest and in RBCs aggregated by avascularization were successfully differentiated. This demonstrates that the proposed method will be useful for estimating the size of RBC aggregates.


2021 ◽  
Author(s):  
Javier Marmolejo ◽  
Adriana Canales ◽  
Dag Hanstorp ◽  
Ricardo Méndez-Fragoso

Abstract The constructive interference of light reflecting on the inner surface of a dielectric sphere results in a rich Mie scattering spectrum. Each resonance can be understood through a quantum-mechanical analogy, while the structure of the full spectrum is predicted to be a series of Fano resonances. However, the overlap of all the different modes results in such a complex spectrum that an intuitive understanding of the full, underlying structure is still missing. Here we present a directional Mie spectrum obtained by selecting a particular polarization and direction of the scattering of levitating water droplets. We find a significantly simplified spectrum organized in distinct, consecutive Mie Fano Combs composed of equidistant resonances that smoothly evolve from wide Lorentzians into sharp Fano profiles. We then fully explain all these characteristics by expanding on the quantum-mechanical analogy. This makes it possible to understand Mie spectra intuitively without the need for computational simulations.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8260
Author(s):  
Hyeong Geun Yu ◽  
Dong Jo Park ◽  
Dong Eui Chang ◽  
Hyunwoo Nam

Raman spectroscopy, which analyzes a Raman scattering spectrum of a target, has emerged as a key technology for non-contact chemical agent (CA) detection. Many CA detection algorithms based on Raman spectroscopy have been studied. However, the baseline, which is caused by fluorescence generated when measuring the Raman scattering spectrum, degrades the performance of CA detection algorithms. Therefore, we propose a baseline correction algorithm that removes the baseline, while minimizing the distortion of the Raman scattering spectrum. Assuming that the baseline is a linear combination of broad Gaussian vectors, we model the measured spectrum as a linear combination of broad Gaussian vectors, bases of background materials and the reference spectra of target CAs. Then, we estimate the baseline and Raman scattering spectrum together using the least squares method. Design parameters of the broad Gaussian vectors are discussed. The proposed algorithm requires reference spectra of target CAs and the background basis matrix. Such prior information can be provided when applying the CA detection algorithm. Via the experiment with real CA spectra measured by the Raman spectrometer, we show that the proposed baseline correction algorithm is more effective for removing the baseline and improving the detection performance, than conventional baseline correction algorithms.


2021 ◽  
Author(s):  
Shang Shi ◽  
Jing Chen ◽  
Yujun Yang ◽  
Chao Yan ◽  
Xiaojun Liu ◽  
...  

2021 ◽  
Vol 14 (12) ◽  
pp. 7497-7526
Author(s):  
Alan J. Geer ◽  
Peter Bauer ◽  
Katrin Lonitz ◽  
Vasileios Barlakas ◽  
Patrick Eriksson ◽  
...  

Abstract. Satellite observations of radiation in the microwave and sub-millimetre spectral regions (broadly from 1 to 1000 GHz) can have strong sensitivity to cloud and precipitation particles in the atmosphere. These particles (known as hydrometeors) scatter, absorb, and emit radiation according to their mass, composition, shape, internal structure, and orientation. Hence, microwave and sub-millimetre observations have applications including weather forecasting, geophysical retrievals and model validation. To simulate these observations requires a scattering-capable radiative transfer model and an estimate of the bulk optical properties of the hydrometeors. This article describes the module used to integrate single-particle optical properties over a particle size distribution (PSD) to provide bulk optical properties for the Radiative Transfer for TOVS microwave and sub-millimetre scattering code, RTTOV-SCATT, a widely used fast model. Bulk optical properties can be derived from a range of particle models including Mie spheres (liquid and frozen) and non-spherical ice habits from the Liu and Atmospheric Radiative Transfer Simulator (ARTS) databases, which include pristine crystals, aggregates, and hail. The effects of different PSD and particle options on simulated brightness temperatures are explored, based on an analytical two-stream solution for a homogeneous cloud slab. The hydrometeor scattering “spectrum” below 1000 GHz is described, along with its sensitivities to particle composition (liquid or ice), size and shape. The optical behaviour of frozen particles changes in the frequencies above 200 GHz, moving towards an optically thick and emission-dominated regime more familiar from the infrared. This region is little explored but will soon be covered by the Ice Cloud Imager (ICI).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongpyo Seo ◽  
S. Hwang ◽  
Byungro Kim ◽  
Yeonhee Yang ◽  
Seungha Yoon ◽  
...  

AbstractAsymmetric spin wave excitation and propagation are key properties to develop spin-based electronics, such as magnetic memory, spin information and logic devices. To date, such nonreciprocal effects cannot be manipulated in a system because of the geometrical magnetic configuration, while large values of asymmetry ratio are achieved. In this study, we suggest a new magnetic system with two blocks, in which the asymmetric intensity ratio can be changed between 0.276 and 1.43 by adjusting the excitation frequency between 7.8 GHz and 9.4 GHz. Because the two blocks have different widths, they have their own spin wave excitation frequency ranges. Indeed, the spin wave intensities in the two blocks, detected by the Brillouin light scattering spectrum, were observed to be frequency-dependent, yielding tuneable asymmetry ratio. Thus, this study provides a new path to enhance the application of spin waves in spin-based electronics.


2021 ◽  
Author(s):  
Bin Liu ◽  
Ma-Long Hu ◽  
Yi-Wen Zhang ◽  
Yue You ◽  
Zhao-Guo Liang ◽  
...  

Abstract We theoretically study the near-field couplings of two stacked all-dielectric nanodisks, where each disk has an electric anapole mode consisting of an electric dipole mode and an electric toroidal dipole (ETD) mode. Strong bonding and anti-bonding hybridizations of the ETD modes of the two disks can occur. The bonding-hybridized ETD can interfere with the dimer's electric dipole mode and induce a new electric anapole mode. The anti-bonding hybridization of the ETD modes can induce a magnetic toroidal dipole (MTD) response in the disk dimer. The MTD and magnetic dipole resonances of the dimer form a magnetic anapole mode. Thus, two dips associated with the hybridized modes appear on the scattering spectrum of the dimer. Furthermore, the MTD mode is also accompanied by an electric toroidal quadrupole mode. The hybridizations of the ETD and the induced higher-order modes can be adjusted by varying the geometries of the disks. The strong anapole mode couplings and the corresponding rich higher-order mode responses in simple all-dielectric nanostructures can provide new opportunities for nanoscale optical manipulations.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012145
Author(s):  
N S Solodovchenko ◽  
T Z Seidov ◽  
K B Samusev ◽  
M F Limonov

Abstract In this paper we present the results of numerical calculations of electromagnetic properties for cylindrical ring resonators (RRs) with rectangular cross-section and a dielectric permittivity corresponding to silicon ε = 12. The calculation of the scattering spectrum (Radar Cross Section) and the field distribution of the modes were performed at in-plane polarized light excitation. The presence of four side walls in the RRs determines a richer spectrum of eigenmodes in comparison with cylindrical whispering gallery modes of disk resonators and creates more possibilities and diversity for their practical applications.


Sign in / Sign up

Export Citation Format

Share Document