carbonate buildups
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 17)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
pp. 2250-2261
Author(s):  
Ahmed Muslim Khawaja ◽  
Jassim Muhammad Thabit

     This research is an attempt to solve the ambiguity associated with the stratigraphic setting of the main reservoir (late Cretaceous) of Mishrif Formation in Dujaila oil field. This was achieved by studying a 3D seismic reflection post-stack data for an area of ​​602.62 Km2 in Maysan Governorate, southeast of Iraq. Seismic analysis of the true amplitude reflections, time maps, and 3D depositional models showed a sufficient seismic evidence that the Mishrif Formation produces oil from a stratigraphic trap of isolated reef carbonate buildups that were grown on the shelf edge of the carbonate platform, located in the area around the productive well Dujaila-1. The low-frequency attribute illustrated that it is restricted in the area around the productive well Dujaila-1, which confirmed the existence of reef porous carbonate buildups and hydrocarbon accumulation in this region. The pay zone of the reef mound trap extends for about 7 km from the well Dujaila-1 toward the southwest side and 4 km toward the well Dujaila-2, without reaching it, which is explaining why it was dry. Therefore, this area to the south of the productive well Dujaila-1 represents a good area for low-risk drilling. Consequently, the hydrocarbon system observed in the Dujaila oil field provides a new opportunity to explore and produce oil in Mishrif Formation in other areas on the flank of the productive structures and in flat areas situated on the belt of the carbonate platform edge.


2020 ◽  
Vol 9 (1) ◽  
pp. 62
Author(s):  
Aysha Kamran ◽  
Kathrin Sauter ◽  
Andreas Reimer ◽  
Theresa Wacker ◽  
Joachim Reitner ◽  
...  

(1) Background: Microbial communities in terrestrial, calcifying high-alkaline springs are not well understood. In this study, we investigate the structure and composition of microbial mats in ultrabasic (pH 10–12) serpentinite springs of the Voltri Massif (Italy). (2) Methods: Along with analysis of chemical and mineralogical parameters, environmental DNA was extracted and subjected to analysis of microbial communities based upon next-generation sequencing. (3) Results: Mineral precipitation and microbialite formation occurred, along with mat formation. Analysis of the serpentinite spring microbial community, based on Illumina sequencing of 16S rRNA amplicons, point to the relevance of alkaliphilic cyanobacteria, colonizing carbonate buildups. Cyanobacterial groups accounted for up to 45% of all retrieved sequences; 3–4 taxa were dominant, belonging to the filamentous groups of Leptolyngbyaceae, Oscillatoriales, and Pseudanabaenaceae. The cyanobacterial community found at these sites is clearly distinct from creek water sediment, highlighting their specific adaptation to these environments.


2020 ◽  
Vol 90 (8) ◽  
pp. 796-820
Author(s):  
Reynaldy Fifariz ◽  
Xavier Janson ◽  
Charles Kerans ◽  
Benyamin Sapiie

ABSTRACT Oligocene–Miocene carbonates are prolific hydrocarbon reservoirs in Southeast Asia. Extensive subsurface data for this stratigraphic section has become available through exploration and production activities. A carbonate shelf in the study area showed an evolution in shelf architecture and lithofacies during this period. Despite the economic importance, complexity, and data availability, there have been few published studies on a comprehensive description and interpretation of carbonate-shelf evolution in the region. We utilized data from nineteen wells and 1,300 km2 of 3D seismic data from offshore East Java to study the Oligocene–Miocene Kujung Formation. An average of 700 m stratigraphic sections from this formation were analyzed. This interval spans 13.5 million years (My) from the Rupelian, Chattian, through Aquitanian constrained by numerical ages from 87Sr/86Sr. The Kujung Formation is subdivided into the Rupelian–Chattian mixed-siliciclastic–carbonate shelf (MSCS) and the Aquitanian carbonate-buildups shelf (CBS) based on shelf architecture and lithofacies. The boundary between the MSCS and CBS is interpreted to be near the Oligocene–Miocene boundary at 23 Ma. Accumulation rates in the CBS are up to three times greater than that of the MSCS. We propose new depositional models for the Kujung Formation, which was used to discuss the dominant controls on shelf evolution. This study suggests that although climate played a role in dictating environmental conditions during the Oligocene–Miocene, the dominant factors controlling carbonate-shelf evolution in the study area appear to have been antecedent topography, routing of siliciclastic sediment, and patterns of sea-level fluctuation.


2020 ◽  
Vol 55 (4) ◽  
pp. 245-260
Author(s):  
V. A. Zhemchugova ◽  
N. V. Evdokimov ◽  
J. Poort ◽  
G. G. Akhmanov

Solid Earth ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 1097-1119
Author(s):  
Łukasz Słonka ◽  
Piotr Krzywiec

Abstract. The geometry and internal architecture of the Upper Jurassic carbonate depositional system in the epicontinental basin of central and western Europe and within the northern margin of the Tethyan shelf are hitherto only partly recognized, especially in areas with thick Cretaceous and younger cover such as the Miechów Trough. In such areas, seismic data are indispensable for the analysis of a carbonate depositional system, in particular for the identification of the carbonate buildups and the enveloping strata. The study area is located in the central part of the Miechów Trough that in the Late Jurassic was situated within the transition zone between the Polish part of the central and western European epicontinental basin and the Tethys Ocean. This paper presents the results of the interpretation of 2D seismic data calibrated by deep wells that document the presence of large Upper Jurassic carbonate buildups. The lateral extent of particular structures is in the range of 400–1000 m, and their heights are in the range of 150–250 m. The interpretation of seismic data revealed that the depositional architecture of the subsurface Upper Jurassic succession in the Miechów Trough is characterized by the presence of large carbonate buildups surrounded by basinal (bedded) limestone and marly-limestone deposits. These observations are compatible with depositional characteristics of well-recognized Upper Jurassic carbonate sediments that crop out in the adjacent Kraków–Częstochowa Upland. The presented study provides new information about carbonate open-shelf sedimentation within the transition zone in the Late Jurassic, which proves the existence of a much more extensive system of organic buildups which flourished in this part of the basin. The results obtained, due to the high quality of available seismic data, also provide an excellent generic reference point for seismic studies of carbonate buildups in other basins and of different ages.


Geosciences ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 239
Author(s):  
Łukasz Słonka ◽  
Piotr Krzywiec

The presented study is devoted to the subsurface Upper Jurassic carbonate buildups and surrounding stratified inter-buildup deposits in the hitherto less recognized area, in comparison with other parts of the northern Tethyan shelf in Poland and Europe. The study area is located within the present-day Miechów Trough, almost entirely covered by thick Cretaceous and younger deposits. This paper shows results of the interpretation of 2D seismic data, calibrated by data from deep wells. Investigation of various elements of the Upper Jurassic carbonate depositional system in the Miechów Trough is supported by seismic facies and attribute analysis. The four distinctive seismic facies—(A) bedded, (B) mound-shaped, (C) contorted-chaotic, and (D) chaotic—were assigned to the main Upper Jurassic sedimentary facies, represented by (1) bedded facies, (2) massive facies (carbonate buildups) and (3) deposits of gravity mass-flows. The results of this study were used to construct a depositional model for the Upper Jurassic succession, that focuses on the initiation, growth and demise of the large carbonate buildups in this part of the basin. This paper also presents the more extensive distribution of the Upper Jurassic carbonate buildups than was previously proposed for the Miechów Trough.


Sign in / Sign up

Export Citation Format

Share Document