Sedimentary record of a Scandinavian Ice Sheet drainage system and till deposition over subglacial obstacles promoting basal sliding (an example from southern Poland)

2015 ◽  
Vol 330 ◽  
pp. 108-121 ◽  
Author(s):  
Tomasz Salamon
2020 ◽  
Author(s):  
Basile de Fleurian ◽  
Petra Langebroek ◽  
Paul Halas

<p>In recent years, temperatures over the Greenland ice sheet have been rising leading to an increase in surface melt.  Projections show that this augmentation of surface melt will continue in the future and spread to higher elevations. As it increases, melt leads to two different feedbacks on the dynamic of the Greenland ice sheet. This augmentation of melt lowers the ice surface and changes its overall geometry hence impacting the ice dynamics through ice deformation. The other feedback comes into play at the base of glaciers. Here, the increase of water availability will impact the distribution of water pressure at the base of glaciers and hence their sliding velocity. The first feedback is relatively well known and relies on our knowledge of the rheology and deformation of ice. The lubrication feedback acting at the bed of glaciers is however highly uncertain on time scales longer than a season. Here we apply the  Ice  Sheet  System  Model  (ISSM)  to  a  synthetic  glacier  which  geometry  is  similar to the one of a Greenland ice sheet land terminating glacier. The dynamic contributions from ice deformation and sliding are separated to study their relative evolution. This is permitted by the use of a dynamical subglacial hydrology model that allows to link the basal sliding to the meltwater production through an appropriate friction law. The  model  is  forced  through  a  simple  temperature  distribution  and  a  Positive  Degree  Day  model which allows to apply a large range of different forcing scenarios. Of particular interest is the evolution of the distribution of the efficient and inefficient component of the subglacial drainage system and their different response to the distribution of melt during the year which directly impact the sliding regime at the base of the glacier.</p>


2020 ◽  
Author(s):  
yufang zhang ◽  
John Moore ◽  
Michael Wolovick ◽  
Rupert Gladstone ◽  
Thomas Zwinger ◽  
...  

<p><strong>Abstract:</strong> Very little is known about the subglacial hydrologic system under the Antarctic Ice Sheet due to the difficulty of directly observing the bottom of the ice sheet. Hydrology modeling is a powerful tool to simulate the spatial distribution of crucial hydrologic properties under the ice sheet. Here, we use the state-of-art two-dimensional Glacier Drainage System model (GlaDS) to simulate both distributed sheet flow and continuous channels under Pine Island Glacier (PIG), West Antarctica, one of the largest contributors to sea level rise in Antarctica.</p><p>We adopt an unstructured triangular mesh which enables channels to form along element edges. We drive the model with meltwater computed from an inversion and steady temperature simulation of PIG using a Stokes flow ice dynamic model. Our domain comprises the full PIG catchment. We aim to study the pattern and development of water pressure, hydraulic potential, water sheet thickness and discharge, as well as channel area and flux, which together describe the state of the basal system.</p><p>Our results for hydraulic potential correctly route water towards the grounding line, while we find near-zero effective pressure underneath the main trunk of PIG, consistent with the low basal drag and low driving stress there. This has implications for the representation of sliding in ice dynamic models: typical assumptions about hydrology connectivity to the ocean will overestimate effective pressure. When run forward in time, efficient channels evolve near the grounding line indicating an efficient drainage system where water fluxes are high in the downstream part of the PIG.</p><p>By applying GlaDS to a real marine ice sheet catchment we can better understand how basal hydrology modulates ice dynamics through basal sliding. We plan to compare our model predictions of effective pressure and drainage system with driving stress and inversions of basal drag. This will allow us to see the relationship between basal hydrology and basal sliding under PIG, and provide us better tools to predict the evolution of the region in view of future climate scenarios. Moving forward, we plan to couple the hydrology model with the ice dynamics model to make more accurate projections of sea level rise from PIG.</p><p>Key Words: West Antarctica, subglacial hydrology, drainage system, GlaDS, Elmer/Ice, Pine Island Glacier</p>


2019 ◽  
Vol 2 ◽  
pp. 43-50 ◽  
Author(s):  
Michael Kenzler ◽  
Heiko Hüneke

Abstract. Four remarkable Pleistocene cliff outcrops scattered across the peninsula of Jasmund exhibit the dynamics of the Scandinavian Ice Sheet during the Weichselian glaciation in this area. The investigated sites display up to 30 m thick sequences of glacial tills with intercalated (glaci)fluvial to (glaci)lacustrine sediments. Based on detailed lithofacies analyses and a physical age chronology, we trace the reconstruction of the depositional sequences and their corresponding stratigraphic position within the Weichselian record.


2014 ◽  
Vol 60 (219) ◽  
pp. 29-40 ◽  
Author(s):  
C.C. Clason ◽  
P.J. Applegate ◽  
P. Holmlund

AbstractWe simulated the Late Weichselian extent and dynamics of the Eurasian ice sheets using the shallow-ice approximation ice-sheet model SICOPOLIS. Our simulated Last Glacial Maximum ice-sheet extents closely resemble geomorphological reconstructions, and areas of modelled fast flow are consistent with the known locations of palaeo-ice streams. Motivated by documented velocity response to increased meltwater inputs on Greenland, we tested the sensitivity of the simulated ice sheet to the surface meltwater effect (SME) through a simple parameterization relating basal sliding to local surface melt rate and ice thickness. Model runs including the SME produce significantly reduced ice volume during deglaciation, with maximum ice surface velocities much greater than in similar runs that neglect the SME. We find that the simple treatment of the SME is not applicable across the whole ice sheet; however, our results highlight the importance of the SME for dynamic response to increased melting. The southwest sector of the Scandinavian ice sheet is most sensitive to the SME, with fast flow in the Baltic ice stream region shutting off by 15 ka BP when the SME is turned on, coincident with a retreat of the ice-margin position into the Gulf of Bothnia.


Sign in / Sign up

Export Citation Format

Share Document