Simulating Antarctic subglacial hydrology processes underneath Pine Island Glacier, West Antarctica, using GlaDS model in Elmer/Ice

Author(s):  
yufang zhang ◽  
John Moore ◽  
Michael Wolovick ◽  
Rupert Gladstone ◽  
Thomas Zwinger ◽  
...  

<p><strong>Abstract:</strong> Very little is known about the subglacial hydrologic system under the Antarctic Ice Sheet due to the difficulty of directly observing the bottom of the ice sheet. Hydrology modeling is a powerful tool to simulate the spatial distribution of crucial hydrologic properties under the ice sheet. Here, we use the state-of-art two-dimensional Glacier Drainage System model (GlaDS) to simulate both distributed sheet flow and continuous channels under Pine Island Glacier (PIG), West Antarctica, one of the largest contributors to sea level rise in Antarctica.</p><p>We adopt an unstructured triangular mesh which enables channels to form along element edges. We drive the model with meltwater computed from an inversion and steady temperature simulation of PIG using a Stokes flow ice dynamic model. Our domain comprises the full PIG catchment. We aim to study the pattern and development of water pressure, hydraulic potential, water sheet thickness and discharge, as well as channel area and flux, which together describe the state of the basal system.</p><p>Our results for hydraulic potential correctly route water towards the grounding line, while we find near-zero effective pressure underneath the main trunk of PIG, consistent with the low basal drag and low driving stress there. This has implications for the representation of sliding in ice dynamic models: typical assumptions about hydrology connectivity to the ocean will overestimate effective pressure. When run forward in time, efficient channels evolve near the grounding line indicating an efficient drainage system where water fluxes are high in the downstream part of the PIG.</p><p>By applying GlaDS to a real marine ice sheet catchment we can better understand how basal hydrology modulates ice dynamics through basal sliding. We plan to compare our model predictions of effective pressure and drainage system with driving stress and inversions of basal drag. This will allow us to see the relationship between basal hydrology and basal sliding under PIG, and provide us better tools to predict the evolution of the region in view of future climate scenarios. Moving forward, we plan to couple the hydrology model with the ice dynamics model to make more accurate projections of sea level rise from PIG.</p><p>Key Words: West Antarctica, subglacial hydrology, drainage system, GlaDS, Elmer/Ice, Pine Island Glacier</p>

2014 ◽  
Vol 8 (5) ◽  
pp. 1699-1710 ◽  
Author(s):  
H. Seroussi ◽  
M. Morlighem ◽  
E. Rignot ◽  
J. Mouginot ◽  
E. Larour ◽  
...  

Abstract. Pine Island Glacier, a major contributor to sea level rise in West Antarctica, has been undergoing significant changes over the last few decades. Here, we employ a three-dimensional, higher-order model to simulate its evolution over the next 50 yr in response to changes in its surface mass balance, the position of its calving front and ocean-induced ice shelf melting. Simulations show that the largest climatic impact on ice dynamics is the rate of ice shelf melting, which rapidly affects the glacier speed over several hundreds of kilometers upstream of the grounding line. Our simulations show that the speedup observed in the 1990s and 2000s is consistent with an increase in sub-ice-shelf melting. According to our modeling results, even if the grounding line stabilizes for a few decades, we find that the glacier reaction can continue for several decades longer. Furthermore, Pine Island Glacier will continue to change rapidly over the coming decades and remain a major contributor to sea level rise, even if ocean-induced melting is reduced.


2013 ◽  
Vol 38 (1) ◽  
pp. 19-54 ◽  
Author(s):  
Vena W. Chu

Understanding Greenland ice sheet (GrIS) hydrology is essential for evaluating response of ice dynamics to a warming climate and future contributions to global sea level rise. Recently observed increases in temperature and melt extent over the GrIS have prompted numerous remote sensing, modeling, and field studies gauging the response of the ice sheet and outlet glaciers to increasing meltwater input, providing a quickly growing body of literature describing seasonal and annual development of the GrIS hydrologic system. This system is characterized by supraglacial streams and lakes that drain through moulins, providing an influx of meltwater into englacial and subglacial environments that increases basal sliding speeds of outlet glaciers in the short term. However, englacial and subglacial drainage systems may adjust to efficiently drain increased meltwater without significant changes to ice dynamics over seasonal and annual scales. Both proglacial rivers originating from land-terminating glaciers and subglacial conduits under marine-terminating glaciers represent direct meltwater outputs in the form of fjord sediment plumes, visible in remotely sensed imagery. This review provides the current state of knowledge on GrIS surface water hydrology, following ice sheet surface meltwater production and transport via supra-, en-, sub-, and proglacial processes to final meltwater export to the ocean. With continued efforts targeting both process-level and systems analysis of the hydrologic system, the larger picture of how future changes in Greenland hydrology will affect ice sheet glacier dynamics and ultimately global sea level rise can be advanced.


2015 ◽  
Vol 112 (46) ◽  
pp. 14191-14196 ◽  
Author(s):  
Johannes Feldmann ◽  
Anders Levermann

The future evolution of the Antarctic Ice Sheet represents the largest uncertainty in sea-level projections of this and upcoming centuries. Recently, satellite observations and high-resolution simulations have suggested the initiation of an ice-sheet instability in the Amundsen Sea sector of West Antarctica, caused by the last decades’ enhanced basal ice-shelf melting. Whether this localized destabilization will yield a full discharge of marine ice from West Antarctica, associated with a global sea-level rise of more than 3 m, or whether the ice loss is limited by ice dynamics and topographic features, is unclear. Here we show that in the Parallel Ice Sheet Model, a local destabilization causes a complete disintegration of the marine ice in West Antarctica. In our simulations, at 5-km horizontal resolution, the region disequilibrates after 60 y of currently observed melt rates. Thereafter, the marine ice-sheet instability fully unfolds and is not halted by topographic features. In fact, the ice loss in Amundsen Sea sector shifts the catchment's ice divide toward the Filchner–Ronne and Ross ice shelves, which initiates grounding-line retreat there. Our simulations suggest that if a destabilization of Amundsen Sea sector has indeed been initiated, Antarctica will irrevocably contribute at least 3 m to global sea-level rise during the coming centuries to millennia.


2018 ◽  
Author(s):  
Michael J. Wolovick ◽  
John C. Moore

Abstract. The Marine Ice Sheet Instability (MISI) is a dynamic feedback that can cause an ice sheet to enter a runaway collapse. Thwaites Glacier, West Antarctica, is the largest individual source of future sea level rise and may have already entered the MISI. Here, we use a suite of coupled ice–ocean flowband simulations to explore whether targeted geoengineering using an artificial sill or artificial ice rises could counter a collapse. Successful interventions occur when the floating ice shelf regrounds on the pinning points, increasing buttressing and reducing ice flux across the grounding line. Regrounding is more likely with a continuous sill that is able to block warm water transport to the grounding line. The smallest design we consider is comparable in scale to existing civil engineering projects but has only a 30 % success rate, while larger designs are more effective. There are multiple possible routes forward to improve upon the designs that we considered, and with decades or more to research designs it is plausible that the scientific community could come up with a plan that was both effective and achievable. While reducing emissions remains the short-term priority for minimizing the effects of climate change, in the long run humanity may need to develop contingency plans to deal with an ice sheet collapse.


Author(s):  
D.J Wingham ◽  
A Shepherd ◽  
A Muir ◽  
G.J Marshall

The Antarctic contribution to sea-level rise has long been uncertain. While regional variability in ice dynamics has been revealed, a picture of mass changes throughout the continental ice sheet is lacking. Here, we use satellite radar altimetry to measure the elevation change of 72% of the grounded ice sheet during the period 1992–2003. Depending on the density of the snow giving rise to the observed elevation fluctuations, the ice sheet mass trend falls in the range −5–+85 Gt yr −1 . We find that data from climate model reanalyses are not able to characterise the contemporary snowfall fluctuation with useful accuracy and our best estimate of the overall mass trend—growth of 27±29 Gt yr −1 —is based on an assessment of the expected snowfall variability. Mass gains from accumulating snow, particularly on the Antarctic Peninsula and within East Antarctica, exceed the ice dynamic mass loss from West Antarctica. The result exacerbates the difficulty of explaining twentieth century sea-level rise.


2017 ◽  
Author(s):  
Frank Pattyn

Abstract. The magnitude of the Antarctic ice sheet's contribution to global sea-level rise is dominated by the potential of its marine sectors to become unstable and collapse as a response to ocean (and atmospheric) forcing. This paper presents Antarctic sea-level response to sudden atmospheric and oceanic forcings on multi-centennial time scales with the newly developed fast Elementary Thermomechanical Ice Sheet (f.ETISh) model. The f.ETISh model is a vertically integrated hybrid ice sheet/ice shelf model with an approximate implementation of ice sheet thermomechanics, making the model two-dimensional. Its marine boundary is represented by two different flux conditions, coherent with power-law basal sliding and Coulomb basal friction. The model has been compared to a series of existing benchmarks. Modelled Antarctic ice sheet response to forcing is dominated by sub-ice shelf melt and the sensitivity is highly dependent on basal conditions at the grounding line. Coulomb friction in the grounding-line transition zone leads to significantly higher mass loss in both West and East Antarctica on centennial time scales, leading to 2 m sea level rise after 500 years for a moderate melt scenario of 20 m a−1 under freely-floating ice shelves, up to 6 m for a 50 m a−1 scenario. The higher sensitivity is attributed to higher driving stresses upstream from the grounding line. Removing the ice shelves altogether results in a disintegration of the West Antarctic ice sheet and (partially) marine basins in East Antarctica. After 500 years, this leads to a 4.5 m and a 12.2 m sea level rise for the power-law basal sliding and Coulomb friction conditions at the grounding line, respectively. The latter value agrees with simulations by DeConto and Pollard (2016) over a similar period (but with different forcing and including processes of hydro-fracturing and cliff failure). The chosen parametrizations make model results largely independent of spatial resolution, so that f.ETISh can potentially be integrated in large-scale Earth system models.


2017 ◽  
Vol 11 (4) ◽  
pp. 1851-1878 ◽  
Author(s):  
Frank Pattyn

Abstract. The magnitude of the Antarctic ice sheet's contribution to global sea-level rise is dominated by the potential of its marine sectors to become unstable and collapse as a response to ocean (and atmospheric) forcing. This paper presents Antarctic sea-level response to sudden atmospheric and oceanic forcings on multi-centennial timescales with the newly developed fast Elementary Thermomechanical Ice Sheet (f.ETISh) model. The f.ETISh model is a vertically integrated hybrid ice sheet–ice shelf model with vertically integrated thermomechanical coupling, making the model two-dimensional. Its marine boundary is represented by two different flux conditions, coherent with power-law basal sliding and Coulomb basal friction. The model has been compared to existing benchmarks. Modelled Antarctic ice sheet response to forcing is dominated by sub-ice shelf melt and the sensitivity is highly dependent on basal conditions at the grounding line. Coulomb friction in the grounding-line transition zone leads to significantly higher mass loss in both West and East Antarctica on centennial timescales, leading to 1.5 m sea-level rise after 500 years for a limited melt scenario of 10 m a−1 under freely floating ice shelves, up to 6 m for a 50 m a−1 scenario. The higher sensitivity is attributed to higher ice fluxes at the grounding line due to vanishing effective pressure. Removing the ice shelves altogether results in a disintegration of the West Antarctic ice sheet and (partially) marine basins in East Antarctica. After 500 years, this leads to a 5 m and a 16 m sea-level rise for the power-law basal sliding and Coulomb friction conditions at the grounding line, respectively. The latter value agrees with simulations by DeConto and Pollard (2016) over a similar period (but with different forcing and including processes of hydrofracturing and cliff failure). The chosen parametrizations make model results largely independent of spatial resolution so that f.ETISh can potentially be integrated in large-scale Earth system models.


2018 ◽  
Vol 12 (9) ◽  
pp. 2955-2967 ◽  
Author(s):  
Michael J. Wolovick ◽  
John C. Moore

Abstract. The Marine Ice Sheet Instability (MISI) is a dynamic feedback that can cause an ice sheet to enter a runaway collapse. Thwaites Glacier, West Antarctica, is projected to be the largest individual source of future sea level rise and may have already entered MISI. Here, we use a suite of coupled quasi-2-D ice–ocean simulations to explore whether targeted geoengineering using either a continuous artificial sill or isolated artificial pinning points could counter a collapse. Successful interventions occur when the floating ice shelf regrounds on the structure, increasing buttressing and reducing ice flux across the grounding line. Regrounding is more likely with a continuous sill that is able to block warm water transport to the grounding line. The smallest design we consider is comparable in scale to existing civil engineering projects but only has a 30 % success rate, while larger designs are more effective. There are multiple possible routes forward to improve upon the designs that we considered, and with decades or more to research designs it is plausible that the scientific community could come up with a plan that is both effective and achievable. While reducing emissions remains the short-term priority for minimizing the effects of climate change, in the long run humanity may need to develop contingency plans to deal with an ice sheet collapse.


2021 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn

<p>Mass loss of the Antarctic ice sheet contributes the largest uncertainty of future sea-level rise projections. Ice-sheet model predictions are limited by uncertainties in climate forcing and poor understanding of processes such as ice viscosity. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) has investigated the 'end-member' scenario, i.e., a total and sustained removal of buttressing from all Antarctic ice shelves, which can be regarded as the upper-bound physical possible, but implausible contribution of sea-level rise due to ice-shelf loss. In this study, we add successive layers of ‘realism’ to the ABUMIP scenario by considering sustained regional ice-shelf collapse and by introducing ice-shelf regrowth after collapse with the inclusion of ice-sheet and ice-shelf damage (Sun et al., 2017). Ice shelf regrowth has the ability to stabilize grounding lines, while ice shelf damage may reinforce ice loss. In combination with uncertainties from basal sliding and ice rheology, a more realistic physical upperbound to ice loss is sought. Results are compared in the light of other proposed mechanisms, such as MICI due to ice cliff collapse.</p>


2015 ◽  
Vol 9 (3) ◽  
pp. 1039-1062 ◽  
Author(s):  
J. J. Fürst ◽  
H. Goelzer ◽  
P. Huybrechts

Abstract. Continuing global warming will have a strong impact on the Greenland ice sheet in the coming centuries. During the last decade (2000–2010), both increased melt-water runoff and enhanced ice discharge from calving glaciers have contributed 0.6 ± 0.1 mm yr−1 to global sea-level rise, with a relative contribution of 60 and 40% respectively. Here we use a higher-order ice flow model, spun up to present day, to simulate future ice volume changes driven by both atmospheric and oceanic temperature changes. For these projections, the flow model accounts for runoff-induced basal lubrication and ocean warming-induced discharge increase at the marine margins. For a suite of 10 atmosphere and ocean general circulation models and four representative concentration pathway scenarios, the projected sea-level rise between 2000 and 2100 lies in the range of +1.4 to +16.6 cm. For two low emission scenarios, the projections are conducted up to 2300. Ice loss rates are found to abate for the most favourable scenario where the warming peaks in this century, allowing the ice sheet to maintain a geometry close to the present-day state. For the other moderate scenario, loss rates remain at a constant level over 300 years. In any scenario, volume loss is predominantly caused by increased surface melting as the contribution from enhanced ice discharge decreases over time and is self-limited by thinning and retreat of the marine margin, reducing the ice–ocean contact area. As confirmed by other studies, we find that the effect of enhanced basal lubrication on the volume evolution is negligible on centennial timescales. Our projections show that the observed rates of volume change over the last decades cannot simply be extrapolated over the 21st century on account of a different balance of processes causing ice loss over time. Our results also indicate that the largest source of uncertainty arises from the surface mass balance and the underlying climate change projections, not from ice dynamics.


Sign in / Sign up

Export Citation Format

Share Document