scholarly journals Effect of burner’s configuration on the temperature profile inside an innovative solar-gas dryer: Numerical and experimental investigations

2022 ◽  
Vol 49 ◽  
pp. 101690
Author(s):  
Naji Abdenouri ◽  
Ahmed Zoukit ◽  
Issam Salhi ◽  
Said Doubabi

An experimental investigation is described of the microstructure of a flat, premixed, fuel-rich hydrogen+oxygen+nitrogen flame at atmospheric pressure. The study involved measurement of the temperature profile and the concentration profiles for the stable species in the flame. By measuring the profile of emitted light intensity when traces of certain inorganic salts were added to the gases entering the flame, it was further possible to derive information about relative hydrogen atom concentrations in the burnt-gas region.


2000 ◽  
Vol 21 (3) ◽  
pp. 322-328 ◽  
Author(s):  
T ZAHNERT ◽  
K HUTTENBRINK ◽  
D MURBE ◽  
M BORNITZ

1987 ◽  
Vol 48 (C5) ◽  
pp. C5-183-C5-186
Author(s):  
J. BLEUSE ◽  
P. VOISIN ◽  
M. VOOS ◽  
L. L. CHANG ◽  
L. ESAKI

2020 ◽  
pp. 51-58
Author(s):  
Aleksandr I. Kazmin ◽  
Pavel A. Fedjunin

One of the most important diagnostic problems multilayer dielectric materials and coatings is the development of methods for quantitative interpretation of the checkout results their electrophysical and geometric parameters. The results of a study of the potential informativeness of the multi-frequency radio wave method of surface electromagnetic waves during reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings are presented. The simulation model is presented that makes it possible to evaluate of the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings. The model takes into account the values of the electrophysical and geometric parameters of the coating, the noise level in the measurement data and the measurement bandwidth. The results of simulation and experimental investigations of reconstruction of the structure of relative permittivitties and thicknesses of single-layer and double-layer dielectric coatings with different thicknesses, with different values of the standard deviation (RMS) of the noise level in the measured attenuation coefficients of the surface slow electromagnetic wave are presented. Coatings based on the following materials were investigated: polymethyl methacrylate, F-4D PTFE, RO3010. The accuracy of reconstruction of the electrophysical parameters of the layers decreases with an increase in the number of evaluated parameters and an increase in the noise level. The accuracy of the estimates of the electrophysical parameters of the layers also decreases with a decrease in their relative permittivity and thickness. The results of experimental studies confirm the adequacy of the developed simulation model. The presented model allows for a specific measuring complex that implements the multi-frequency radio wave method of surface electromagnetic waves, to quantify the potential possibilities for the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric materials and coatings. Experimental investigations and simulation results of a multilayer dielectric coating demonstrated the theoretical capabilities gained relative error permittivity and thickness of the individual layers with relative error not greater than 10 %, with a measurement bandwidth of 1 GHz and RMS of noise level 0,003–0,004.


Sign in / Sign up

Export Citation Format

Share Document