scholarly journals Spontaneous symmetry breaking in quantum systems: Emergence or reduction?

Author(s):  
N.P. Landsman
Author(s):  
Yoshimasa Hidaka ◽  
Yuki Minami

Abstract We discuss spontaneous symmetry breaking of open classical and quantum systems. When a continuous symmetry is spontaneously broken in an open system, a gapless excitation mode appears corresponding to the Nambu–Goldstone mode. Unlike isolated systems, the gapless mode is not always a propagation mode, but it is a diffusion one. Using the Ward–Takahashi identity and the effective action formalism, we establish the Nambu–Goldstone theorem in open systems, and derive the low-energy coefficients that determine the dispersion relation of Nambu–Goldstone modes. Using these coefficients, we classify the Nambu–Goldstone modes into four types: type-A propagation, type-A diffusion, type-B propagation, and type-B diffusion modes.


2021 ◽  
pp. 100453
Author(s):  
Hetian Chen ◽  
Di Yi ◽  
Ben Xu ◽  
Jing Ma ◽  
Cewen Nan

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1358
Author(s):  
Yiannis Contoyiannis ◽  
Michael P. Hanias ◽  
Pericles Papadopoulos ◽  
Stavros G. Stavrinides ◽  
Myron Kampitakis ◽  
...  

This paper presents our study of the presence of the unstable critical point in spontaneous symmetry breaking (SSB) in the framework of Ginzburg–Landau (G-L) free energy. Through a 3D Ising spin lattice simulation, we found a zone of hysteresis where the unstable critical point continued to exist, despite the system having entered the broken symmetry phase. Within the hysteresis zone, the presence of the kink–antikink SSB solitons expands and, therefore, these can be observed. In scalar field theories, such as Higgs fields, the mass of this soliton inside the hysteresis zone could behave as a tachyon mass, namely as an imaginary quantity. Due to the fact that groups Ζ(2) and SU(2) belong to the same universality class, one expects that, in future experiments of ultra-relativistic nuclear collisions, in addition to the expected bosons condensations, structures of tachyon fields could appear.


1982 ◽  
Vol 25 (1) ◽  
pp. 311-318 ◽  
Author(s):  
G. M. Ribeiro ◽  
L. V. Gonzaga ◽  
A. S. Chaves ◽  
R. Gazzinelli ◽  
R. Blinc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document