goldstone mode
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 20)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Giovanni Italo Martone ◽  
Sandro Stringari

The phase diagram of a Bose-Einstein condensate with Raman-induced spin-orbit coupling includes a stripe phase with supersolid features. In this work we develop a perturbation approach to study the ground state and the Bogoliubov modes of this phase, holding for small values of the Raman coupling. We obtain analytical predictions for the most relevant observables (including the periodicity of stripes, sound velocities, compressibility, and magnetic susceptibility) which are in excellent agreement with the exact (non perturbative) numerical results, obtained for significantly large values of the coupling. We further unveil the nature of the two gapless Bogoliubov modes in the long-wavelength limit. We find that the spin branch of the spectrum, corresponding in this limit to the dynamics of the relative phase between the two spin components, describes a translation of the fringes of the equilibrium density profile, thereby providing the crystal Goldstone mode typical of a supersolid configuration. Finally, using sum-rule arguments, we show that the superfluid density can be experimentally accessed by measuring the ratio of the sound velocities parallel and perpendicular to the direction of the spin-orbit coupling.


Author(s):  
Abdulla Rakhimov ◽  
Asliddin Khudoyberdiev ◽  
B. Tanatar

We study the modification of low-temperature properties of quantum magnets such as magnetization, heat capacity, energy spectrum and densities of condensed and noncondensed quasiparticles (triplons) due to anisotropies in the framework of mean-field- based approach. We show that in contrast to exchange anisotropy (EA) interaction, Dzyaloshinsky–Moriya (DM) interaction modifies the physics dramatically. Particularly, it changes the sign of the anomalous density in the whole range of temperatures. Its critical behavior is slightly modified also by the EA. We have found that the shift of the critical temperature of phase transition (or crossover caused by DM interaction) is positive and significant. Using the experimental data on the magnetization of the compound TlCuCl3, we have found optimal values for the strengths of EA and DM interactions. The spectrum of the energy of low lying excitations has also been investigated and found to develop a linear dispersion similar to Goldstone mode with a negligibly small anisotropy gap.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Aristomenis Donos ◽  
Polydoros Kailidis ◽  
Christiana Pantelidou

Abstract We study dissipation in holographic superfluids at finite temperature and zero chemical potential. The zero overlap with the heat current allows us to isolate the physics of the conserved current corresponding to the broken global U(1). By using analytic techniques we write constitutive relations including the first non-trivial dissipative terms. The corresponding transport coefficients are determined in terms of thermodynamic quantities and the black hole horizon data. By analysing their behaviour close to the phase transition we show explicitly the breakdown of the hydrodynamic expansion. Finally, we study the pseudo-Goldstone mode that emerges upon introducing a perturbative symmetry breaking source and we determine its resonant frequency and decay rate.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Kevin Nguyen ◽  
Jakob Salzer

Abstract Infrared divergences in perturbative gravitational scattering amplitudes have been recently argued to be governed by the two-point function of the supertranslation Goldstone mode on the celestial sphere. We show that the form of this celestial two-point function simply derives from an effective action that also controls infrared divergences in the symplectic structure of General Relativity with asymptotically flat boundary conditions. This effective action finds its natural place in a path integral formulation of a celestial conformal field theory, as we illustrate by re-deriving the infrared soft factors in terms of celestial correlators. Our analysis relies on a well-posed action principle close to spatial infinity introduced by Compère and Dehouck.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Sabrina Pasterski ◽  
Herman Verlinde

Abstract We build on the observation by Hawking, Perry and Strominger that a global black hole space-time supports a large number of soft hair degrees of freedom to shed new light on the firewall argument by Almheiri, Marolf, Polchinski, and Sully. We propose that the soft hair Goldstone mode is encoded in a classical transition function that connects the asymptotic and near horizon region. The entropy carried by the soft hair is part of the black hole entropy and encoded in the outside geometry. We argue that the infalling observer automatically measures the classical value of the soft mode before reaching the horizon and that this measurement implements a code subspace projection that enables the reconstruction of interior operators. We use the soft hair dynamics to introduce an observer dependent notion of the firewall and show that for an infalling observer it recedes inwards into the black hole interior: the observer never encounters a firewall before reaching the singularity. Our results indicate that the HPS black hole soft hair plays an essential role in dissolving the AMPS firewall.


2021 ◽  
pp. 117194
Author(s):  
Achu Chandran ◽  
Amit Choudhary ◽  
Lokesh K. Gangwar ◽  
T.K. Abhilash ◽  
B.S. Athira ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nina del Ser ◽  
Lukas Heinen ◽  
Achim Rosch

In chiral magnets a magnetic helix forms where the magnetization winds around a propagation vector {q}q. We show theoretically that a magnetic field B_\bot(t) \bot qB⊥(t)⊥q, which is spatially homogeneous but oscillating in time, induces a net rotation of the texture around {q}q. This rotation is reminiscent of the motion of an Archimedean screw and is equivalent to a translation with velocity v_{\text{screw}}vscrew parallel to q. Due to the coupling to a Goldstone mode, this non-linear effect arises for arbitrarily weak B_\bot(t)B⊥(t) with v_{\text{screw}} \propto |{ B_\perp}|^2vscrew∝|B⊥|2 as long as pinning by disorder is absent. The effect is resonantly enhanced when internal modes of the helix are excited and the sign of v_{\text{screw}}vscrew can be controlled either by changing the frequency or the polarization of B_\bot(t)B⊥(t). The Archimedean screw can be used to transport spin and charge and thus the screwing motion is predicted to induce a voltage parallel to q. Using a combination of numerics and Floquet spin wave theory, we show that the helix becomes unstable upon increasing B_\botB⊥, forming a `time quasicrystal’ which oscillates in space and time for moderately strong drive.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1130
Author(s):  
Alexander A. Osipov ◽  
Brigitte Hiller ◽  
Alex H. Blin ◽  
Marcos Sampaio

Here, we use the Schwinger–DeWitt approach to address the four-fermion composite Higgs effective model proposed by Miransky, Tanabashi and Yamawaki (MTY). The surprising benefit of such an approach is that it is possible to ascribe to a SM-type Higgs a quark–antiquark structure of predominantly a b¯b nature with a small t¯t admixture, which in turn yields a Higgs mass compatible with the observed value of 125 GeV. We discuss this result in a detailed and pedagogical way, as it goes against the common belief that this model and akin composite descriptions should predict a Higgs mass-of-order of twice the top quark mass, contrary to empirical evidence. A further aspect of this approach is that it highlights the link of the SU(2)L×U(1)R symmetric four-fermion MTY model interactions of the heavy quark family to a specific two-Higgs-doublet model (2HDM), and the necessity to go beyond the one Higgs doublet to obtain the empirical Higgs mass within composite models. By appropriately fixing the symmetry-defining interaction parameters, we show that the resulting CP-preserving spectrum harbors the following collective states at the electroweak scale ΛEW=246 GeV: a light scalar to which the standard Higgs is associated; a heavier neutral state preconized as the Nambu partner of the standard Higgs within the Nambu sum rule; the expected triplet of Goldstone bosons associated with the longitudinal polarizations of the electroweak massive bosons; and a neutral pseudoscalar state that in the limit of a global U(1)A symmetry would be a Goldstone mode. The anomalous breaking of this axial symmetry is a subleading effect in a large Nc counting scheme, and we discuss how it modifies the leading-order Nambu sum rule result and its relevance for the qualitative description of the spectrum.


2021 ◽  
Author(s):  
Eun-Ah Kim ◽  
Jordan Venderley ◽  
Michael Matty ◽  
Krishnanand Mallayya ◽  
Matthew Krogstad ◽  
...  

Abstract The information content of crystalline materials becomes astronomical when collective electronic behavior and their fluctuations are taken into account. In the past decade, improvements in source brightness and detector technology at modern x-ray facilities have allowed a dramatically increased fraction of this information to be captured. Now, the primary challenge is to understand and discover scientific principles from big data sets when a comprehensive analysis is beyond human reach. We report the development of a novel unsupervised machine learning approach, XRD Temperature Clustering (X-TEC), that can automatically extract charge density wave (CDW) order parameters and detect intra-unit cell (IUC) ordering and its fluctuations from a series of high-volume X-ray diffraction (XRD) measurements taken at multiple temperatures. We apply X-TEC to XRD data on a quasi-skutterudite family of materials, (CaxSr1-x)3Rh4Sn13, where a quantum critical point arising from charge order is observed as a function of Ca concentration. We further apply X-TEC to XRD data on the pyrochlore metal, Cd2Re2O7, to investigate its two much debated structural phase transitions and uncover the Goldstone mode accompanying them. We demonstrate how unprecedented atomic scale knowledge can be gained when human researchers connect the X-TEC results to physical principles. Specifically, we extract from the X-TEC-revealed selection rule that the Cd and Re displacements are approximately equal in amplitude, but out of phase. This discovery reveals a previously unknown involvement of 5d2 34 Re, supporting the idea of an electronic origin to the structural order. Our approach can radically transform XRD experiments by allowing in-operando data analysis and enabling researchers to refine experiments by discovering interesting regions of phase space on-the- y.


Sign in / Sign up

Export Citation Format

Share Document