dislocation core
Recently Published Documents


TOTAL DOCUMENTS

451
(FIVE YEARS 53)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Vol 203 ◽  
pp. 111081
Author(s):  
Tomohito Tsuru ◽  
Mitsuhiro Itakura ◽  
Masatake Yamaguchi ◽  
Chihiro Watanabe ◽  
Hiromi Miura

2022 ◽  
pp. 117622
Author(s):  
Yu-Hao Li ◽  
Hong-Bo Zhou ◽  
Fei Gao ◽  
Gang Lu ◽  
Guang-Hong Lu ◽  
...  

Author(s):  
E. A. Yakovleva ◽  
A. V. Larionov ◽  
G. D. Motovilina ◽  
E. I. Khlusova

The operating conditions of welded structures of shipbuilding steels, including operation at northern latitudes, determine high requirements for their quality. Materials used for such structures should guarantee stable mechanical properties, good processability during hull fabrication and serviceability at subzero temperatures. Strain aging is due to the thermodynamic non-equilibrium of steel structure in its initial state and gradual transition to the equilibrium state provided the diffusion mobility of interstitial atoms is sufficient. In unfavorable conditions, this can lead to the degradation of properties during processing (cold straightening, bending, welding), operation or long-term storage. The paper studies the probability of natural and artificial ageing processes in steels of different chemical compositions due to bulk diffusion and carbon dislocation core diffusion (dislocation pipe diffusion). The effect of strain ageing on mechanical properties and the CTOD parameter value has been examined.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tongqi Wen ◽  
Rui Wang ◽  
Lingyu Zhu ◽  
Linfeng Zhang ◽  
Han Wang ◽  
...  

AbstractLarge scale atomistic simulations provide direct access to important materials phenomena not easily accessible to experiments or quantum mechanics-based calculation approaches. Accurate and efficient interatomic potentials are the key enabler, but their development remains a challenge for complex materials and/or complex phenomena. Machine learning potentials, such as the Deep Potential (DP) approach, provide robust means to produce general purpose interatomic potentials. Here, we provide a methodology for specialising machine learning potentials for high fidelity simulations of complex phenomena, where general potentials do not suffice. As an example, we specialise a general purpose DP method to describe the mechanical response of two allotropes of titanium (in addition to other defect, thermodynamic and structural properties). The resulting DP correctly captures the structures, energies, elastic constants and γ-lines of Ti in both the HCP and BCC structures, as well as properties such as dislocation core structures, vacancy formation energies, phase transition temperatures, and thermal expansion. The DP thus enables direct atomistic modelling of plastic and fracture behaviour of Ti. The approach to specialising DP interatomic potential, DPspecX, for accurate reproduction of properties of interest “X”, is general and extensible to other systems and properties.


2021 ◽  
pp. 104137
Author(s):  
Nilgoon Irani ◽  
Yaswanth Murugesan ◽  
Can Ayas ◽  
Lucia Nicola

2021 ◽  
Author(s):  
Zhaoxuan Wu ◽  
Rui Wang ◽  
Lingyu Zhu ◽  
Subrahmanyam Pattamatta ◽  
David Srolov

Abstract Body-centred-cubic (BCC) transition metals (TMs) tend to be brittle at low temperatures, posing significant challenges in their processing and major concerns for damage tolerance in critical load-carrying applications. The brittleness is largely dictated by the screw dislocation core structure; the nature and control of which has remained a puzzle for nearly a century. Here, we introduce a universal model and a physics-based material index χ that guides the manipulation of dislocation core structure in all pure BCC metals and alloys. We show that the core structure, commonly classified as degenerate (D) or non-degenerate (ND), is governed by the energy difference between BCC and face-centred cubic (FCC) structures and χ robustly captures this key quantity. For BCC TMs alloys, the core structure transition from ND to D occurs when χ drops below a threshold, as seen in atomistic simulations based on nearly all extant interatomic potentials and density functional theory (DFT) calculations of W-Re/Ta alloys. In binary W-TMs alloys, DFT calculations show that χ is related to the valence electron concentration at low to moderate solute concentrations, and can be controlled via alloying. χ can be quantitatively and efficiently predicted via rapid, low-cost DFT calculations for any BCC metal alloys, providing a robust, easily applied tool for the design of ductile and tough BCC alloys.


Physchem ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 225-231
Author(s):  
Vladyslav Turlo

Dislocations present unique opportunities for nanostructuring advanced structural and functional materials due to the recent discoveries of linear complexions thermodynamically stable nanoscale features with unique chemistry and structure confined at dislocations. The formation of such features is driven by solute segregation near the dislocation core and results in the stabilization of dislocations, altering mechanical, thermodynamic, and transport properties of the final material. This perspective article gives an overview of the recent discoveries and predictions made by high-resolution experimental characterization techniques, as well as large-scale atomistic simulations in the newly emerging field of linear complexions.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Anatoly Kuklov ◽  
Emil Polturak ◽  
Nikolay Prokof'ev ◽  
Boris Svistunov

Sign in / Sign up

Export Citation Format

Share Document