On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity

2009 ◽  
Vol 138 (1) ◽  
pp. 168-173 ◽  
Author(s):  
M.-W. Ahn ◽  
K.-S. Park ◽  
J.-H. Heo ◽  
D.-W. Kim ◽  
K.J. Choi ◽  
...  
2016 ◽  
Vol 65 (11) ◽  
pp. 118104
Author(s):  
Li Jiang-Jiang ◽  
Gao Zhi-Yuan ◽  
Xue Xiao-Wei ◽  
Li Hui-Min ◽  
Deng Jun ◽  
...  

2019 ◽  
Vol 242 ◽  
pp. 71-74 ◽  
Author(s):  
Lingmin Yu ◽  
Chun Li ◽  
Shuai Ma ◽  
Yuan Li ◽  
Lijun Qi ◽  
...  

2010 ◽  
Vol 146 (1) ◽  
pp. 361-367 ◽  
Author(s):  
Le Viet Thong ◽  
Nguyen Duc Hoa ◽  
Dang Thi Thanh Le ◽  
Do Thanh Viet ◽  
Phuong Dinh Tam ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
Gulgina Mamtimin ◽  
Halisa Arkin ◽  
Patima Nizamidin ◽  
Erkin Tursun ◽  
Abliz Yimit

Author(s):  
Priya Gupta ◽  
Savita Maurya ◽  
Narendra Kumar Pandey ◽  
Vernica Verma

: This review paper encompasses a study of metal-oxide and their composite based gas sensors used for the detection of ammonia (NH3) gas. Metal-oxide has come into view as an encouraging choice in the gas sensor industry. This review paper focuses on the ammonia sensing principle of the metal oxides. It also includes various approaches adopted for increasing the gas sensitivity of metal-oxide sensors. Increasing the sensitivity of the ammonia gas sensor includes size effects and doping by metal or other metal oxides which will change the microstructure and morphology of the metal oxides. Different parameters that affect the performances like sensitivity, stability, and selectivity of gas sensors are discussed in this paper. Performances of the most operated metal oxides with strengths and limitations in ammonia gas sensing application are reviewed. The challenges for the development of high sensitive and selective ammonia gas sensor are also discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 100
Author(s):  
Hongcheng Liu ◽  
Feipeng Wang ◽  
Kelin Hu ◽  
Tao Li ◽  
Yuyang Yan ◽  
...  

In this paper, the Ir-modified MoS2 monolayer is suggested as a novel gas sensor alternative for detecting the characteristic decomposition products of SF6, including H2S, SO2, and SOF2. The corresponding adsorption properties and sensing behaviors were systematically studied using the density functional theory (DFT) method. The theoretical calculation indicates that Ir modification can enhance the surface activity and improve the conductivity of the intrinsic MoS2. The physical structure formation, the density of states (DOS), deformation charge density (DCD), molecular orbital theory analysis, and work function (WF) were used to reveal the gas adsorption and sensing mechanism. These analyses demonstrated that the Ir-modified MoS2 monolayer used as sensing material displays high sensitivity to the target gases, especially for H2S gas. The gas sensitivity order and the recovery time of the sensing material to decomposition products were reasonably predicted. This contribution indicates the theoretical possibility of developing Ir-modified MoS2 as a gas sensor to detect characteristic decomposition gases of SF6.


2007 ◽  
Vol 121-123 ◽  
pp. 611-614
Author(s):  
Che Hsin Lin ◽  
Jen Taie Shiea ◽  
Yen Lieng Lin

This paper proposes a novel method to on-chip fabricate a none-dead-volume microtip for ESI-MS applications. The microfluidic chip and ESI tip are fabricated in low-cost plastic based materials using a simple and rapid fabrication process. A constant-speed-pulling method is developed to fabricate the ESI tip by pulling mixed PMMA glue using a 30-μm stainless wire through the pre-formed microfluidic channel. The equilibrium of surface tension of PMMA glue will result in a sharp tip after curing. A highly uniform micro-tip can be formed directly at the outlet of the microfluidic channel with minimum dead-volume zone. Detection of caffeine, myoglobin, lysozyme and cytochrome C biosamples confirms the microchip device can be used for high resolution ESI-MS applications.


2021 ◽  
pp. 2151043
Author(s):  
Zijing Wang ◽  
Fen Wang ◽  
Angga Hermawan ◽  
Jianfeng Zhu ◽  
Shu Yin

Porous nitrogen-doped Ti3C2T[Formula: see text] MXene (N-TCT) with a three-dimensional network structure is synthesized via a simple sacrifice template method and then utilized as an acetone gas sensor. By introducing nitrogen atoms as heteroatoms into Ti3C2T[Formula: see text] nanosheets, some defects generate around the doped nitrogen atoms, which can greatly improve the surface hydrophilicity and adsorption capacity of Ti3C2T[Formula: see text] Mxene nanosheets. It resulted in the enhanced gas sensitivity, achieving a response value of about 36 ([Formula: see text]/[Formula: see text] × 100%) and excellent recovery time (9s) at 150[Formula: see text]C. Compared with the pure Ti3C2T[Formula: see text]-based gas sensor (381/92s), the response and recovery time are both obviously improved, and the response value increased by 3.5 times. The gas-sensing mechanism of the porous N-TCT is also discussed in detail. Based on the excellent gas sensitivity of porous N-TCT for highly responsive acetone detection at high temperatures, the strategy of nitrogen-doped two-dimensional nanomaterials can be extended to other nanomaterials to realize their potential applications.


2007 ◽  
Vol 24 (10) ◽  
pp. 2839-2841 ◽  
Author(s):  
Zhang Yong-Gang ◽  
Tian Zhao-Bing ◽  
Zhang Xiao-Jun ◽  
Gu Yi ◽  
Li Ai-Zhen ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document