On-Chip Fabrication of None-Dead-Volume Microtips for ESI-MS Applications

2007 ◽  
Vol 121-123 ◽  
pp. 611-614
Author(s):  
Che Hsin Lin ◽  
Jen Taie Shiea ◽  
Yen Lieng Lin

This paper proposes a novel method to on-chip fabricate a none-dead-volume microtip for ESI-MS applications. The microfluidic chip and ESI tip are fabricated in low-cost plastic based materials using a simple and rapid fabrication process. A constant-speed-pulling method is developed to fabricate the ESI tip by pulling mixed PMMA glue using a 30-μm stainless wire through the pre-formed microfluidic channel. The equilibrium of surface tension of PMMA glue will result in a sharp tip after curing. A highly uniform micro-tip can be formed directly at the outlet of the microfluidic channel with minimum dead-volume zone. Detection of caffeine, myoglobin, lysozyme and cytochrome C biosamples confirms the microchip device can be used for high resolution ESI-MS applications.

Author(s):  
Md Nazibul Islam ◽  
Steven M Doria ◽  
Zachary R Gagnon

Over the last two decades, microfluidics has received significant attention from both academia and industry, and researchers report thousands of new prototype devices each year for use in a broad range of environmental, pharmaceutical, and biomedical engineering applications. While lab-on-a-chip fabrication costs have continued to decrease, the hardware required for monitoring fluid flows within microfluidic devices themselves remains expensive and often cost prohibitive for researchers interested in starting a microfluidics project. As microfluidic devices become capable of handling complex fluidic systems, low-cost, precise and real time pressure and flow rate measurement capabilities has become increasingly important. While many labs use commercial platforms and sensor, these solutions can often cost thousands of dollars and can be too bulky for on-chip use. Here we present a new inexpensive and easy -to-use piezoresistive pressure and flow sensor that can be easily integrated into existing on-chip microfluidic channels. The sensor consists of PDMS-Carbon black conductive membranes and uses an impedance analyzer to measure impedance change due fluid pressure. The sensor costs several orders of magnitude less than existing commercial platforms and can monitor local fluid pressures and calculate flow rates based on pressure gradient.


2013 ◽  
Vol 61 (2) ◽  
Author(s):  
Mohamad Faizal Abdullah ◽  
P. L. Leow ◽  
M. A. Abd Razak ◽  
F. K. Che Harun

Significant attention has been given on the development of droplets–based microfluidic system because of its potential and apparent advantages. Beside the advantages of reducing the sample volume, it’s also offer less time consuming for the analysis. Optical and fluorescence among the famous method that was used in detection of droplets but they are normally bulky, expensive and not easily accessed. This paper proposed a simple, low cost and high sensitivity for droplets sensing in microfluidic devices by using capacitive sensor. Coplanar electrodes are used to form a capacitance through the microfluidic channel. The design of eight pair of electrodes was used to detect the presence of a droplet. Changes in capacitance due to the presence of a droplet in the sensing area is detected and used to trigger the microscope to capture the image of detected droplets in microchannel. The measurement of droplets detected and counting are displayed through a LABVIEW interface in the real time.


Author(s):  
Junwen Zhu ◽  
Qiqian Zhang ◽  
Fei Liang ◽  
Yongxiang Feng ◽  
Wenhui Wang

Abstract There is a growing desire for cell rotation in the field of biophysics, bioengineering and biomedicine. We herein present novel microfluidic channels for simultaneous high-throughput cell self-rotation using local circular streaming generated by ultrasonic wave excited bubble arrays. The bubble traps achieve high homogeneity of liquid-gas interface by setting capillary valves at the entrances of dead-end bubble trappers orthogonal to the main microchannel. In such a highly uniform bubble array, rotation at different fields of bubble-relevant vortices is considered equal and interconvertible. The device is compatible with cells of various size and retains manageable rotation velocity when actuated by signals of varying frequency and voltage. Experimental observations were confirmed consistent with theoretical estimation and numerical simulation. Comparing with the conventional approaches of cell rotation, our device has multiple merits such as high throughput, low cost and simple fabrication procedure, and high compatibility for lab-on-chip integration. Therefore, the platform holds a promise in cell observation, medicine development and biological detection.


2020 ◽  
Author(s):  
Thomas E. Winkler ◽  
Michael Feil ◽  
Eva F.G.J. Stronkman ◽  
Isabelle Matthiesen ◽  
Anna Herland

AbstractWe see affordability as a key challenge in making organs-on-chips accessible to a wider range of users, particularly outside the highest-resource environments. Here, we present an approach to barrier-on-a-chip fabrication based on double-sided pressure-sensitive adhesive tape and off-the-shelf polycarbonate. Besides a low materials cost, common also to PDMS or thermoplastics, it requires minimal (€ 100) investment in laboratory equipment, yet at the same time is suitable for upscaling to industrial roll-to-roll manufacture. We evaluate our microhpysiological system with an epithelial (C2BBe1) barrier model of the small intestine, studying the biological effects of permeable support pore size, as well as stimulation with a common food compound (chili pepper-derived capsaicinoids). The cells form tight and continuous barrier layers inside our systems, with comparable permeability but superior epithelial polarization compared to Transwell culture, in line with other perfused microphysiological models. Permeable support pore size is shown to weakly impact barrier layer integrity as well as the metabolic cell profile. Capsaicinoid response proves distinct between culture systems, but we show that impacted metabolic pathways are partly conserved, and that cytoskeletal changes align with previous studies. Overall, our tape-based microphysiolgical system proves to be a robust and reproducible approach to studying physiological barriers, in spite of its low cost.


Author(s):  
Shurui Wang ◽  
Simon Chun Kiat Goh ◽  
Li Lynn Shiau ◽  
Nan Chen ◽  
Kailiang Chuan ◽  
...  
Keyword(s):  
Low Cost ◽  

Author(s):  
K Karthikeyan ◽  
L Sujatha

AbstractThis paper deals with design, simulation, fabrication, analysis of mixing efficiency and thin film bonding stability of the micromixer devices with different flow rates used for lab on chip applications. The objective of the present study is to achieve complete mixing with low flow rate and less pressure drop in low cost polymer microfluidic devices. This paper emphasis the design, simulation and fabrication of straight channel micromixer, serpentine channel micromixer with and without quadrant shaped grooves to study the mixing behavior by the effect of structural dimensions of the microfluidic channel at different flow rates. The designed micromixers were tested with varying rates of flow such as 1, 10, 25, 50, 75 and 100 µL/min.


Author(s):  
Md Nazibul Islam ◽  
Steven M Doria ◽  
Zachary R Gagnon ◽  
Xiaotong Fu

Over the last two decades, microfluidics has received significant attention from both academia and industry, and researchers report thousands of new prototype devices each year for use in a broad range of environmental, pharmaceutical, and biomedical engineering applications. While lab-on-a-chip fabrication costs have continued to decrease, the hardware required for monitoring fluid flows within microfluidic devices themselves remains expensive and often cost prohibitive for researchers interested in starting a microfluidics project. As microfluidic devices become capable of handling complex fluidic systems, low-cost, precise and real time pressure and flow rate measurement capabilities has become increasingly important. While many labs use commercial platforms and sensor, these solutions can often cost thousands of dollars and can be too bulky for on-chip use. Here we present a new inexpensive and easy -to-use piezoresistive pressure and flow sensor that can be easily integrated into existing on-chip microfluidic channels. The sensor consists of PDMS-Carbon black conductive membranes and uses an impedance analyzer to measure impedance change due fluid pressure. The sensor costs several orders of magnitude less than existing commercial platforms and can monitor local fluid pressures and calculate flow rates based on pressure gradient.


2019 ◽  
Author(s):  
Ulri N. Lee ◽  
John H. Day ◽  
Amanda J. Haack ◽  
Wenbo Lu ◽  
Ashleigh B. Theberge ◽  
...  

Patterning and 3D fabrication techniques have enabled the use of hydrogels for a number of applications including microfluidics, sensors, separations, and tissue engineering in which form fits function. Devices such as reconfigurable microvalves or implantable tissues have been created using lithography or casting techniques. Here, we present a novel open microfluidic patterning method that utilizes surface tension forces to pattern hydrogel layers on top of each other, producing 3D hydrogel structures. We use a patterning device to form a temporary open microfluidic channel on an existing gel layer, allowing the controlled flow of unpolymerized gel in regions defined by the device. Once the gel is polymerized, the patterning device can then be removed, and subsequent layers added to create a multi-layered 3D structure. The use of open-microfluidic and surface tension-based methods to define the shape of each layer enables patterning to be performed with a simple pipette, minimizing dead-volume and shear stress applied on the fluid. Our method is compatible with unmodified (native) biological hydrogels, or other non-biological materials with fluid properties compatible with capillary flow. With our open-microfluidic layer-by-layer fabrication method, we demonstrate the capability to build agarose and type I collagen structures featuring asymmetric designs, multiple components, overhanging features, and cell laden regions.


Sign in / Sign up

Export Citation Format

Share Document