Metal-oxide based ammonia gas sensors: A review

Author(s):  
Priya Gupta ◽  
Savita Maurya ◽  
Narendra Kumar Pandey ◽  
Vernica Verma

: This review paper encompasses a study of metal-oxide and their composite based gas sensors used for the detection of ammonia (NH3) gas. Metal-oxide has come into view as an encouraging choice in the gas sensor industry. This review paper focuses on the ammonia sensing principle of the metal oxides. It also includes various approaches adopted for increasing the gas sensitivity of metal-oxide sensors. Increasing the sensitivity of the ammonia gas sensor includes size effects and doping by metal or other metal oxides which will change the microstructure and morphology of the metal oxides. Different parameters that affect the performances like sensitivity, stability, and selectivity of gas sensors are discussed in this paper. Performances of the most operated metal oxides with strengths and limitations in ammonia gas sensing application are reviewed. The challenges for the development of high sensitive and selective ammonia gas sensor are also discussed.

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4405 ◽  
Author(s):  
Dezhi Wu ◽  
Qianqian Peng ◽  
Shan Wu ◽  
Guangshun Wang ◽  
Lei Deng ◽  
...  

Ammonia gas sensors are very essential in many industries and everyday life. However, their complicated fabrication process, severe environmental fabrication requirements and desorption of residual ammonia molecules result in high cost and hinder their market acceptance. Here, laser direct writing is used to fabricate three parallel porous 3D graphene lines on a polyimide (PI) tape to simply construct an ammonia gas sensor. The middle one works as an ammonia sensing element and the other two on both sides work as heaters to improve the desorption performance of the sensing element to ammonia gas molecules. The graphene lines were characterized by scanning electron microscopy and Raman spectroscopy. The response and recovery time of the sensor without heating are 214 s and 222 s with a sensitivity of 0.087% ppm−1 for sensing 75 ppm ammonia gas, respectively. The experimental results prove that under the optimized heating temperature of about 70 °C the heaters successfully help implement complete desorption of residual NH3 showing a good sensitivity and cyclic stability.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1352
Author(s):  
Sanjit Manohar Majhi ◽  
Ali Mirzaei ◽  
Hyoun Woo Kim ◽  
Sang Sub Kim

Reduced graphene oxide (rGO) is a reduced form of graphene oxide used extensively in gas sensing applications. On the other hand, in its pristine form, graphene has shortages and is generally utilized in combination with other metal oxides to improve gas sensing capabilities. There are different ways of adding rGO to different metal oxides with various morphologies. This study focuses on rGO-loaded metal oxide nanofiber (NF) synthesized using an electrospinning method. Different amounts of rGO were added to the metal oxide precursors, and after electrospinning, the gas response is enhanced through different sensing mechanisms. This review paper discusses rGO-loaded metal oxide NFs gas sensors.


2011 ◽  
Vol 694 ◽  
pp. 155-159
Author(s):  
Tai You Chen ◽  
Jian Sheng Wu ◽  
Chi Shiang Hsu ◽  
Po Cheng Chou ◽  
Huey Ing Chen ◽  
...  

The ZnO nanorods-based ammonia (NH3) gas sensors with different electrode spacing are fabricated and studied. Experimentally, the hexagonal ZnO nanorods were prepared by a hydrothermal method. The diameter and length of ZnO nanorods were about 179±2, 1806±5 nm, respectively. By shrinking the electrode spacing, the sensor response of studied device is improved and the sensor response is enhanced more than ten times in magnitude. The improved NH3 sensing ability caused by shrink electrode spacing is attributed to the presence of more grain boundaries and depletion layers. Therefore, the studied device with the shrink of electrode spacing provides a promise for high-performance ammonia sensing applications.


RSC Advances ◽  
2018 ◽  
Vol 8 (72) ◽  
pp. 41280-41287 ◽  
Author(s):  
Bin Wang ◽  
Xiaolin Wang ◽  
Xiaocheng Li ◽  
Zhijiang Guo ◽  
Xin Zhou ◽  
...  

Three new room temperature reversible ammonia gas sensors were fabricated using PcCo/rGO hybrids with cost-efficient, highly sensitive and stable sensing performance.


2014 ◽  
Vol 974 ◽  
pp. 76-85 ◽  
Author(s):  
Ghenadii Korotcenkov ◽  
B.K. Cho

In this review different aspects of material and structural engineering of metal oxides aimed for application in conductometric gas sensors (chemiresistors) were analyzed. Results, mainly obtained for SnO2and In2O3–based sensors during surface functionalizing by noble metals have been used for showing an opportunity of material and structural engineering of metal oxides to optimize gas sensing characteristics.


Nanoscale ◽  
2015 ◽  
Vol 7 (36) ◽  
pp. 14872-14880 ◽  
Author(s):  
Xu Liu ◽  
Nan Chen ◽  
Bingqian Han ◽  
Xuechun Xiao ◽  
Gang Chen ◽  
...  

Pt activated SnO2 nanoparticle clusters were synthesized by a simple solvothermal method for use in highly sensitive ammonia gas sensors.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2829
Author(s):  
Yubin Yuan ◽  
Haiyang Wu ◽  
Xiangrui Bu ◽  
Qiang Wu ◽  
Xuming Wang ◽  
...  

Gas-sensing performance of graphene-based material has been investigated widely in recent years. Polyaniline (PANI) has been reported as an effective method to improve ammonia gas sensors’ response. A gas sensor based on a composite of rGO film and protic acid doped polyaniline (PA-PANI) with GO doping is reported in this work. GO mainly provides NH3 adsorption sites, and PA-PANI is responsible for charge transfer during the gas-sensing response process. The experimental results indicate that the NH3 gas response of rGO is enhanced significantly by decorating with PA-PANI. Moreover, a small amount of GO mixed with PA-PANI is beneficial to increase the gas response, which showed an improvement of 262.5% at 25 ppm comparing to no GO mixing in PA-PANI.


2019 ◽  
Vol 48 (4) ◽  
pp. 1367-1375 ◽  
Author(s):  
Maddaka Reddeppa ◽  
Byung-Guon Park ◽  
Nguyen Duc Chinh ◽  
Dojin Kim ◽  
Jae-Eung Oh ◽  
...  

In gas sensors, metal oxide semiconductors have been considered as favorable resistive-type toxic gas sensing materials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 892
Author(s):  
Artem Chizhov ◽  
Marina Rumyantseva ◽  
Alexander Gaskov

The review deals with issues related to the principle of operation of resistive semiconductor gas sensors and the use of light activation instead of thermal heating when detecting gases. Information on the photoelectric and optical properties of nanocrystalline oxides SnO2, ZnO, In2O3, and WO3, which are the most widely used sensitive materials for semiconductor gas sensors, is presented. The activation of the gas sensitivity of semiconductor materials by both UV and visible light is considered. When activated by UV light, the typical approaches for creating materials are (i) the use of individual metal oxides, (ii) chemical modification with nanoparticles of noble metals and their oxides, (iii) and the creation of nanocomposite materials based on metal oxides. In the case of visible light activation, the approaches used to enhance the photo- and gas sensitivity of wide-gap metal oxides are (i) doping; (ii) spectral sensitization using dyes, narrow-gap semiconductor particles, and quantum dots; and (iii) addition of plasmon nanoparticles. Next, approaches to the description of the mechanism of the sensor response of semiconductor sensors under the action of light are considered.


2021 ◽  
Author(s):  
Yushu Shi ◽  
Huiyan Xu ◽  
Tongyao Liu ◽  
Shah Zeb ◽  
Yong Nie ◽  
...  

The scheme of the structure of this review includes an introduction from the metal oxide nanomaterials’ synthesis to application in H2 gas sensors—a vision from the past to the future.


Sign in / Sign up

Export Citation Format

Share Document