scholarly journals Temperature sensitivity of extracellular enzymes differs with peat depth but not with season in an ombrotrophic bog

2018 ◽  
Vol 125 ◽  
pp. 244-250 ◽  
Author(s):  
J. Megan Steinweg ◽  
Joel E. Kostka ◽  
Paul J. Hanson ◽  
Christopher W. Schadt
2021 ◽  
Author(s):  
Adetunji Alex Adekanmbi ◽  
Laurence Dale ◽  
Liz Shaw ◽  
Tom Sizmur

<p>Predicting the pattern of soil organic matter (SOM) decomposition as a feedback to climate change, via release of CO<sub>2</sub>, is extremely complex and has received much attention. However, investigations often do not differentiate between the extracellular and intracellular processes involved and work is needed to identify their relative temperature sensitivities. Samples were collected from a grassland soil at Sonning, UK with average daily maximum and minimum soil temperature of 15 °C and 5 °C. We measured potential activities of β-glucosidase (BG) and chitinase (NAG) (extracellular enzymes) and glucose-induced CO<sub>2 </sub>respiration (intracellular enzymes) at a range of assay temperatures (5 °C, 15 °C, 26 °C, 37<sup>  </sup>°C, and 45 °C). The temperature coefficient Q<sub>10</sub> (the increase in enzyme activity that occurs after a 10 °C increase in soil temperature) was calculated to assess the temperature sensitivity of intracellular and extracellular enzymes activities. Between 5 °C and 15 °C intracellular and extracellular enzyme activities had equal temperature sensitivity, but between 15 °C and 26°C intracellular enzyme activity was more temperature sensitive than extracellular enzyme activity and between 26 °C and 37 °C extracellular enzyme activity was more temperature sensitive than intracellular enzyme activity. This result implies that extracellular depolymerisation of higher molecular weight organic compounds is more sensitive to temperature changes at higher temperatures (e.g. changes to daily maximum summer temperature) but the intracellular respiration of the generated monomers is more sensitive to temperature changes at moderate temperatures (e.g. changes to daily mean summer temperature). We therefore conclude that the extracellular and intracellular steps of SOM mineralisation are not equally sensitive to changes in soil temperature. The finding is important because we have observed greater increases in average daily minimum temperatures than average daily mean or maximum temperatures due to increased cloud cover and sulphate aerosol emission. Accounting for this asymmetrical global warming may reduce the importance of extracellular depolymerisation and increase the importance of intracellular catalytic activities as the rate limiting step of SOM decomposition.</p>


2016 ◽  
Vol 131 (3) ◽  
pp. 255-265 ◽  
Author(s):  
Megan B. Machmuller ◽  
Jacqueline E. Mohan ◽  
Jeffrey M. Minucci ◽  
Carly A. Phillips ◽  
Nina Wurzburger

Geoderma ◽  
2020 ◽  
Vol 374 ◽  
pp. 114426
Author(s):  
J.Y. Wang ◽  
C.J. Ren ◽  
X.X. Feng ◽  
L. Zhang ◽  
R. Doughty ◽  
...  

2020 ◽  
Vol 14 (2) ◽  
pp. 15
Author(s):  
Zaidah Zainal ariffin

Fungi is known to produce a wide range of biologically active metabolites and enzymes. Enzymes produced by fungi are utilized in food and pharmaceutical industries because of their rich enzymatic profile. Filamentous fungi are particularly interesting due to their high production of extracellular enzymes which has a large industrial potential. The aim of this study is to isolate potential soil fungi species that are able to produce functional enzymes for industries. Five Aspergillus species were successfully isolated from antibiotic overexposed soil (GPS coordinate of N3.093219 E101.40269) by standard microbiological method. The isolated fungi were identified via morphological observations and molecular tools; polymerase chain reactions, ITS 1 (5’- TCC GTA GGT GAA CCT GCG G3’) forward primer and ITS 4 (5’-TCC TCC GCT TAT TGA TAT GC-3’) reverse primer. The isolated fungi were identified as Aspergillus sydowii strain SCAU066, Aspergillus tamarii isolate TN-7, Aspergillus candidus strain KUFA 0062, Aspergillus versicolor isolate BAB-6580, and Aspergillus protuberus strain KAS 6024. Supernatant obtained via submerged fermentation of the isolated fungi in potato dextrose broth (PDB) and extracted via centrifugation was loaded onto specific media to screen for the production of xylanolytic, cellulolytic and amylolytic enzymes. The present findings indicate that Aspergillus sydowii strain SCAU066 and Aspergillus versicolor isolate BAB-6580 have great potential as an alternative source of xylanolytic, cellulolytic and amylolytic enzymes.


2014 ◽  
Vol 37 (11) ◽  
pp. 988-997 ◽  
Author(s):  
Li XU ◽  
Shu-Xia YU ◽  
Nian-Peng HE ◽  
Xue-Fa WEN ◽  
Pei-Li SHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document